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The structure of energy-containing turbulence in the outer region of a zero-pressure-
gradient boundary layer has been studied using particle image velocimetry (PIV) to
measure the instantaneous velocity fields in a streamwise-wall-normal plane. Exper-
iments performed at three Reynolds numbers in the range 930 < Reθ < 6845 show
that the boundary layer is densely populated by velocity fields associated with hairpin
vortices. (The term ‘hairpin’ is here taken to represent cane, hairpin, horseshoe, or
omega-shaped vortices and deformed versions thereof, recognizing these structures are
variations of a common basic flow structure at different stages of evolution and with
varying size, age, aspect ratio, and symmetry.) The signature pattern of the hairpin
consists of a spanwise vortex core located above a region of strong second-quadrant
fluctuations (u < 0 and v > 0) that occur on a locus inclined at 30–60◦ to the wall.

In the outer layer, hairpin vortices occur in streamwise-aligned packets that propa-
gate with small velocity dispersion. Packets that begin in or slightly above the buffer
layer are very similar to the packets created by the autogeneration mechanism (Zhou,
Adrian & Balachandar 1996). Individual packets grow upwards in the streamwise
direction at a mean angle of approximately 12◦, and the hairpins in packets are typi-
cally spaced several hundred viscous lengthscales apart in the streamwise direction.
Within the interior of the envelope the spatial coherence between the velocity fields
induced by the individual vortices leads to strongly retarded streamwise momen-
tum, explaining the zones of uniform momentum observed by Meinhart & Adrian
(1995). The packets are an important type of organized structure in the wall layer
in which relatively small structural units in the form of three-dimensional vortical
structures are arranged coherently, i.e. with correlated spatial relationships, to form
much longer structures. The formation of packets explains the occurrence of multiple
VITA events in turbulent ‘bursts’, and the creation of Townsend’s (1958) large-scale
inactive motions. These packets share many features of the hairpin models proposed
by Smith (1984) and co-workers for the near-wall layer, and by Bandyopadhyay
(1980), but they are shown to occur in a hierarchy of scales across most of the
boundary layer.

In the logarithmic layer, the coherent vortex packets that originate close to the wall
frequently occur within larger, faster moving zones of uniform momentum, which may
extend up to the middle of the boundary layer. These larger zones are the induced
interior flow of older packets of coherent hairpin vortices that originate upstream
and over-run the younger, more recently generated packets. The occurence of small
hairpin packets in the environment of larger hairpin packets is a prominent feature
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of the logarithmic layer. With increasing Reynolds number, the number of hairpins
in a packet increases.

1. Introduction
The structure of the turbulent wall layer continues to be one of the outstand-

ing unsolved questions in the phenomenology of turbulence. Recent promising de-
velopments concerning the near-wall portion of the inner layer, i.e. up to about
y+ = yu∗/ν = 50–60 (where u∗ is the wall friction velocity and ν the kinematic
viscosity), focus on the role of the low-speed streaks (Jeong et al. 1997; Waleffe &
Kim 1997). These theories and models rest upon studies of near-wall structure using
experiments and low-Reynolds-number direct numerical simulations (DNS). The
outer layer consists of the logarithmic layer, in which the lengthscale varies almost
linearly, and the wake region in which the lengthscale approaches the boundary-layer
thickness. Both layers contain eddies as small as those found in the buffer layer, as
well as the much larger eddies. Much less is known about the structure of the outer
layer than the buffer layer, partly because it contains a wider range of scales, making
observation difficult, and partly because it is a region of larger Reynolds number,
making direct numerical simulation difficult. Without a good model of the structure
it is not possible to explain even the most fundamental features of the logarithmic
layer. For example, why does the lengthscale grow almost linearly in the log-layer,
what is the structural basis for a logarithmic (or near logarithmic) variation, and what
determines empirical parameters, such von Kármán’s constant or related parameters
in non-logarithmic formulations? The work of Perry and co-workers, which will be
discussed later, comes closest to providing such a model, but it relies on an incomplete
physical description, and thus requires a number of modelling assumptions.

1.1. Single hairpins

The individual hairpin vortex is a simple coherent structure that explains many of
the features observed in wall turbulence (Theodorsen 1952; Head & Bandyopadhyay
1981). In recent years, asymmetric hairpins or ‘cane’ vortices have been more com-
monly observed than symmetric hairpins (Guezennec, Piomelli & Kim 1987; Robinson
1991, 1993). (For brevity we shall not distinguish between symmetric and asymmetric
hairpins, nor will we distinguish between hairpins and horseshoes, since available
evidence suggests that these structures are variations of a common basic structure at
different stages of evolution or in different surrounding flow environments. Thus, in
this paper ‘hairpin’ will mean all hairpin-like structures, narrow or wide, symmetric or
asymmetric.) Theodorsen’s (1952) analysis considered perturbations of the spanwise
vortex lines of the mean flow that were stretched by the shear into intensified hairpin
loops. Smith (1984) extended this model and reported hydrogen bubble visualizations
of hairpin loops at low Reynolds number. While there is evidence for a formation
mechanism like Theodorsen’s in homogeneous shear flow (Rogers & Moin 1987;
Adrian & Moin 1988), it is now clear that Theodorsen’s model must be modified
in the strongly inhomogeneous region near a wall to include long quasi-streamwise
vortices spaced about 50y∗ apart (where y∗ = ν/u∗ is the viscous lengthscale), and
connected to the head of the hairpin by vortex necks inclined at roughly 45◦ to
the wall (Robinson 1991, 1993). With this simple model, the low-speed streaks are
explained as the viscous, low-speed fluid that is induced to move up from the wall by
the quasi-streamwise vortices. Second-quadrant ejections (positive values of the wall
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normal turbulent velocity component, v > 0, and negative values of the streamwise
velocity fluctuation, u < 0) are the low-speed fluid that is caused to move through
the inclined loop of the hairpin by vortex induction from the legs and the head. The
stagnation point flow that occurs when this ejection or ‘Q2’ flow encounters a fourth-
quadrant (Q4) sweep (v < 0, u > 0) of higher-speed fluid moving toward the back of
the hairpin is a VITA event, as defined by Blackwelder & Kaplan (1976), while the
ejection and stagnation point correspond to a TPAV event as defined in the pattern
recognition study of Wallace, Brodkey & Eckelmann (1977). The stagnation-point
flow creates the inclined shear layer.

This scenario is substantiated by the direct experimental observations of Liu,
Adrian & Hanratty (1991) who used particle image velocimetry (PIV) to examine the
structure of wall turbulence in the streamwise wall-normal plane of a fully developed
low-Reynolds-number channel flow. They found shear layers growing up from the wall
which were inclined at angles of less than 45◦ from the wall. Regions containing high
Reynolds stress were associated with the near-wall shear layers. Typically, these shear
layers terminated in regions of rolled-up spanwise vorticity, which were interpreted
to be the heads of hairpin vortices.

The flow visualizations of Nychas, Hershey & Brodkey (1973) are consistent with a
hairpin vortex picture, although they were interpreted somewhat differently. Nychas
et al. (1973) filmed solid particles in a water flow using a moving camera and
identified transverse vortices in the outer layer which were formed at the top of a
shear layer extending from the near-wall region to the outer region. They attributed
the shear layer to low-speed fluid interacting with upstream high-speed fluid. They
observed that the transverse vortices were not triggered by low-speed streaks, but
they interpreted the transverse vortices to be the result of the shear layer rolling
up, instead of a pre-existing hairpin. This experiment also provides a connection
between the transverse vortices and the unsteady events in the near-wall layer that
are associated with the widely recognized bursting process. When the transverse
vortices convected downstream, an ejection sequence occurred near the wall. Finally,
the motions in the near-wall region were swept away. Virtually all the Reynolds stress
was produced during the sequence of events associated with transverse vortices.

Recent examination of a direct numerical simulation of a zero-pressure-gradient
turbulent boundary layer at Reθ = 670 (Spalart 1988) also provides convincing
evidence for the presence of hairpin loops near the wall (Chong et al. 1998). These
loops are associated with significant Reynolds shear stress.

In the context of the hairpin model, ejections are associated with the passage of
a hairpin and the attendant transverse vorticity in the hairpin head. The frequency
with which ejections occur is determined by the spacing between the hairpins and
their convection velocity. The frequency of turbulent bursts has been studied by
many investigators using conditional averaging based upon VITA event detection
schemes (Blackwelder & Kaplan 1976; Blackwelder & Haritonidis 1983; Alfredsson
& Johansson 1984). In the hairpin model, each VITA event corresponds to an ejection
(Q2) event caused by the hairpin. Unfortunately, there still exists controversy over
the proper scaling of ejection frequency, so it is difficult to infer the proper scaling
of hairpins. Often, the measured bursting frequency depends upon the values used in
the VITA event detection scheme.

1.2. Multiple hairpins in the inner layer

Several authors, Bogard & Tiederman (1986), Luchik & Tiederman (1987), and Tardu
(1995), have observed that multiple ejections in the near-wall layer commonly occur
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within a single burst event. This suggests that some of the inconsistency between
reported measurements of bursting frequency is associated with confusion between
ejection events and bursts. In the near-wall model of Smith (1984), hairpins occur
in groups of two or three along a line of low-speed fluid. These hairpins grow as
they move downstream with their heads lifting away from the wall along a line
inclined at 15–30◦ to the wall. By associating a burst with the complete group of
hairpins, both the long extent of the near-wall low-speed streaks and the occurrence
of multiple ejections per burst can be explained. Acarlar & Smith (1987a, b) have
shown experimentally that a hemispherical bump or a steady jet of low-momentum
fluid injected into a laminar boundary layer can cause periodic shedding of hairpins
that looks, at first appearance, like a group of hairpins. However, the point of
creation of the group is rooted at the site of the disturbance. Haidari & Smith (1994)
eliminated the recurrent formation of hairpins at one site by momentarily injecting a
low-momentum puff of fluid at the wall of a laminar boundary layer. They succeeded
in creating one, and sometimes two hairpins, and in the case of one hairpin formed
by injection they observed one additional hairpin formed by generation. Smith et al.
(1991) have analysed the formation of hairpins extensively, and have proposed two
theoretical mechanisms for the formation of multiple hairpins. An important aspect
of that work is the prediction of a violent eruptive event.

In related direct numerical simulations work, Zhou et al. (1996, 1997, 1999) consid-
ered the evolution of an initial structure that approximated the conditional average
of the flow field around a Q2 (ejection) event close to the wall in the mean turbulent
flow velocity profile of a low-Reynolds-number channel flow. The initial conditional
structure looked approximately like a hairpin. If its strength, relative to the back-
ground mean shear, was below a critical value the structure evolved into a single
omega-shaped hairpin whose head grew until it was confined by the height of the
channel (360 viscous wall units for the Reynolds number they studied). If its strength
was above the critical value, the initial hairpin spawned hairpins upstream and, sur-
prisingly, also downstream. The spawned hairpins grew and spawned further hairpins
in like fashion. Except for the absence of a violent eruption, these numerical results
generally support the theoretical work of Smith et al. (1991), and suggest strongly
that multiple hairpins are formed in the low-Reynolds-number near-wall region under
proper circumstances. It must be emphasized, however, that all of the evidence cited
in this section is for data below y+ = 100 (Smith 1984) or 200 (Zhou et al. 1996,
1997, 1999). Also, the single-probe data on multiple ejections were obtained mainly
in the buffer layer. Hence, the results cannot be used to demonstrate the existence of
hairpins or multiple hairpins anywhere except the very bottom of the outer layer.

1.3. Hairpin structure in the outer layer

Many of the elements of near-wall structure have been identified by hot-wire studies
and conditional averaging, but direct numerical simulations at low Reynolds number
(cf. Kim, Moin & Moser 1987; Spalart 1988; Brooke & Hanratty 1993, for example)
were particularly important in Robinson’s (1991) effort to assemble the individual
observations into a more unified picture of the inner layer out to about 100–200
viscous wall units. For this reason, much of our most direct evidence about the
structure of wall turbulence is confined to the low inner layer, and based on low-
Reynolds-number flows that do not have a logarithmic layer. Furthermore, flow
visualization, which is effective in seeing the sharp outer edge of the boundary layer,
has not been as useful in the outer layer owing to the rapid diffusion of dye or smoke
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in this region. Consequently, the structure of the outer layer is less well established
than the near-wall region.

Despite these difficulties, it is known that the logarithmic layer contains thin
shear layers, ejections, sweeps, and inclined structures (Head & Bandyopadhyay
1981; Brown & Thomas 1977; Chen & Blackwelder 1978). The range of reported
inclination angles varied from 18◦ to 45◦, suggesting these groups measured different
structures, or different aspects of the same structure. If it is granted that the single
hairpin vortex model offers one explanation for these phenomena, then it is reasonable
to hypothesize that hairpins occur in the outer layer. Unfortunately, for the reasons
cited above, it has proved very difficult to make convincing observations of hairpins
in the outer region of wall turbulent flows having Reynolds numbers substantially
above transition. Without such observations, it is not possible to claim that hairpins
are anything more than a low-Reynolds-number phenomenon, or even a remnant
of transition that is not likely to be an important part of general wall-turbulence
structure.

Perhaps the strongest experimental support for the existence of hairpin vortices in
the outer layer at elevated Reynolds number is given by Head & Bandyopadhyay
(1981) (see also Bandyopadhyay 1980, 1983). They used a light sheet to illuminate
smoke within a zero-pressure-gradient turbulent boundary layer at Reynolds numbers
based on momentum thickness 500 < Reθ = U∞θ/ν < 17 500. Time-sequenced
images of the boundary layer were filmed with a high-speed camera at framing rates
approaching 1500 frames per second. They concluded that for Reynolds numbers up
to Reθ = 10 000, the turbulent boundary layer consists of vortex loops, horseshoes,
and hairpin structures that are inclined at a characteristic angle of 45◦ to the wall.

Even though the spanwise dimension of the vortical structures varied significantly,
Head & Bandyopadhyay (1981) proposed that, in a mean sense, their spanwise extent
scaled roughly with inner variables. This scaling concept has important implications
for the Reynolds-number dependency of the vortical motions. For Reθ < 500, there
is no clear distinction between the large and small scales of the flow. In fact,
the large-scale motions appear as single vortex loops. As the Reynolds number
increases, the effect of the streamwise velocity gradient becomes more pronounced,
causing vortex loops to be increasingly stretched in the streamwise direction, while
becoming increasingly thinner in the spanwise direction. Consequently, characteristic
low-Reynolds-number vortex loops appear like horseshoes at Reθ ∼ 2000 and appear
like hairpins at Reθ ∼ 10 000, according to Head & Bandyopadhyay.

Head & Bandyopadhyay (1981) also proposed that the hairpins occur in groups
whose heads describe an envelope inclined at 15–20◦ with respect to the wall. The
picture is similar to Smith’s (1984) model, but instead of being based on data below
y+ = 100, Head & Bandyopadhyay (1981) based their construct on direct observations
of ramp-like patterns on the outer edge of the boundary layer (Bandyopadhyay 1980),
plus more inferential conclusions from data within the boundary layer.

Perry and colleagues have performed extensive modelling of the statistics of the
turbulent wall layer in terms of a model based on randomly distributed Λ-shaped
vortices (their idealization of a hairpin). Perry & Chong (1982) proposed two possible
methods by which Λ-shaped vortices can grow in size with increasing distance from
the wall. First, the vortices could pair to form larger vortices, creating a discrete
hierarchy of Λ vortices throughout the boundary layer. Secondly, the Λ-vortices could
grow continuously by drawing vorticity from the mean flow. Under certain conditions,
both of these scenarios lead to a logarithmic profile for mean velocity.

Perry, Henbest & Chong (1986) extended Townsend’s (1976) attached-eddy hy-
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pothesis, and the near-wall model developed by Perry & Chong (1982) to encompass
the entire fully turbulent region of the flow. They suggested that attached eddies
with ‘Kline scaling’ are formed in the viscous sublayer. These eddies are stretched
and either die from viscous diffusion and vorticity cancellation, or they pair and
become a second hierarchy of attached eddies. This process is successively repeated,
forming many hierarchies of attached eddies. It was suggested that the hierarchical
lengthscales obey an inverse power-law probability distribution, which leads to a
logarithmic mean-velocity profile, a constant Reynolds-stress layer, and an inverse
power-law spectral region for fluctuating horizontal velocities. In addition, they pro-
posed that the hierarchy of attached eddies is responsible for mean vorticity and most
of the turbulent kinetic energy.

The objective of the present research is to gain a better understanding of coherent
structures in the outer layer of wall turbulence by experimentally examining coherent
structures in a zero-pressure-gradient boundary layer at Reynolds numbers Reθ = 930,
2370 and 6845. Most of the previously reported flow-visualization experiments and
DNS are limited to examining details of the flow at only relatively low Reynolds
numbers. In order to examine details of the turbulence at moderate Reynolds numbers,
many experiments have relied primarily upon single-point measurement techniques,
such as LDV or hot-wire anemometry, to obtain the required spatial resolution.
In the present work, simultaneous measurements of both small-scale and large-
scale motions in the streamwise–wall-normal plane are made using a high-resolution
photographic PIV technique described by Meinhart (1994). The resulting vector fields
provide quantitative information that makes it possible to visualize structures within
boundary layers at Reynolds numbers that are higher than can be achieved using
direct numerical simulations. Portions of these experiments have been presented in
preliminary reports by Meinhart & Adrian (1995). The results presented here provide
much more extensive direct observations of structure, which are needed to bridge the
gap between structure in the low-Reynolds-number near-wall region and structure at
the outer edge of the boundary layer. They definitively support a consistent picture
in which packets of multiple hairpin vortices are created at the wall and grow to span
the entire boundary layer, a paradigm that subsumes both the near- and far-wall
evidence.

2. Experimental procedure
2.1. Boundary-layer flow facility

The turbulent boundary layer was developed on a horizontal flat plate placed 100 mm
above the floor of the test section. To ensure spanwise uniform transition of the
boundary layer and to stabilize the downstream location of the transition, a 4.7 mm
diameter wire trip was placed 110 mm from the elliptically shaped leading edge of the
plate, for Reynolds numbers Reθ = 2370 and 6845. For the lowest Reynolds number,
Reθ = 930, the trip was moved to a location 1520 mm downstream of the leading edge
allow the boundary layer to transition naturally before the trip. Reynolds numbers
of the trip, based on free-stream velocity and cylinder diameter were 480, 1137 and
3264 for Reθ = 930, 2370 and 6845, respectively. In order to determine the effect of
the trip upon the structure of the boundary layer, a set of PIV measurements was
taken without the boundary-layer trip. The results showed no discernable differences
in the boundary-layer structure.

The boundary-layer pressure gradient was directly measured by 20 static pressure
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U∞ δ θ u∗ y∗
Reθ Reδ Reλ (m s−1) (mm) (mm) (m s−1) (mm) δ+ H λ/δ

930 7719 102 1.60 75.7 9.10 0.074 0.213 355 1.43 0.15
2370 20 000 189 3.79 82.8 9.84 0.158 0.099 836 1.37 0.12
6845 55 164 385 10.88 78.0 9.71 0.400 0.039 2000 1.38 0.10

Table 1. Boundary-layer flow parameters.

ports on the boundary-layer plate. By adjusting the contour of the test-section ceiling,
the pressure gradient was made to vanish to within 0.2–3.8% of the free-stream
dynamic head, depending upon Reynolds number.

Measurements were performed in an Eiffel-type low-turbulence boundary-layer
wind tunnel with a working test-section 914 mm wide×457 mm high×6090 mm long.
The root-mean square of the free-stream turbulence intensity, measured at the inlet
to the test section using a 0.05 mm diameter hot-film probe, was less than 0.2%,
for free-stream velocities below 10 m s−1. Velocity profiles, measured with hot-film
anemometry at x = 0.76, 2.28, 3.81 and 5.33 m, showed that the boundary layer was
self-similar, to within experimental uncertainty, when plotted with outer variables.
The wind tunnel was designed so that the ratio between the boundary-layer thickness
on each sidewall and the test-section width was less than 0.09, thereby ensuring that
the boundary layer on the flat plate was two-dimensional over the central 80% of its
width. The degree of two-dimensionality was determined by measuring mean velocity
profiles over the entire cross-section of the wind tunnel using hot-film anemometry.
The mean velocity profiles varied by less than 7% of U∞ over the middle 80% of the
test-section width.

All PIV measurements were taken 5.33 m from the leading edge. Optical access
to the boundary layer was provided from the side by 305 mm × 710 mm float-glass
windows, and from below by 610 mm wide × 2748 mm long float-glass windows
embedded in the boundary-layer plate.

Mean velocity profiles measured with PIV agreed with hot-film anemometer mea-
surements to within 2% of the free-stream velocity, which is within the uncertainty
of the hot-film calibration. Hot-film measurements have an advantage over PIV mea-
surements in that they usually have finer velocity resolution than PIV measurements.
One advantage PIV has over hot-film anemometry is that the accuracy of the PIV
calibration is independent of flow speed and thermal effects, whereas the accuracy
of hot-film calibration varies significantly with flow conditions. This was particularly
important at low speeds for which the uncertainty in the hot-film calibration was
larger than that of PIV measurements.

2.2. PIV measurements

The PIV experiments were performed at three different Reynolds numbers, Reθ =
930, 2370 and 6845. The Reynolds number was changed solely by varying the
free-stream velocity. Table 1 describes the boundary-layer flow conditions at x =
5.33 m for these Reynolds numbers. The Reynolds numbers Reθ and Reδ are defined
using the free-stream velocity and the momentum thickness or the 99% boundary-
layer thickness, respectively. The turbulent Reynolds number Reλ = σµλ/ν is defined
using the root-mean-square streamwise velocity, σµ, and the spatial Taylor microscale
of streamwise velocity in the streamwise direction, λ. The Taylor microscale was
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Figure 1. Schematic of PIV photographic recording system. The streamwise–wall-normal plane of
a zero-pressure-gradient boundary layer is illuminated by a vertical laser light sheet and imaged by
a side-viewing 4 in.× 5 in. photographic camera.

estimated by expanding the autocorrelation function of streamwise velocity about its
origin. The viscous lengthscale is y∗ = ν/u∗. The von Kármán number δ+, defined
as the ratio between the boundary-layer thickness δ and the viscous lengthscale y∗,
is also tabulated. It represents the range between the smallest and largest scales of
motion in the flow. The shape factor H is the ratio between displacement thickness
and momentum thickness.

The lowest Reynolds number, Reθ = 930, was chosen to be directly comparable
to results from direct numerical simulations, cf. Spalart (1988). This boundary layer
is not far beyond the transition from laminar to turbulent flow, which would occur
in the range Reθ ∼300–500, depending upon the trip. The middle Reynolds number,
Reθ = 2370, was chosen because a significant number of published experimental
results are available at Reynolds numbers near this value. The highest Reynolds
number Reθ = 6845, was above the value Reθ = 6000 at which Coles (1962) considers
the wake region of the boundary layer to be roughly independent of Reynolds number.
Reθ = 6000 also coincides with Reλ exceeding 300, above which the turbulence is
considered to be fully developed. Thus, we view the flow at Reθ = 930 as weak,
post-transition turbulence and the flow at Reθ = 6845 as representative of moderately
high-Reynolds-number boundary-layer flow. Although the behaviour at Reθ = 6845
cannot be extrapolated to very high Reynolds number without further evidence, it
is certainly closer to behaving like very high Reynolds numbers than the other two
flows we have studied.

The PIV measurements were performed by illuminating 0.5–2 µm diameter oil
particles with a 0.25 mm thick light sheet produced by two digitally timed Nd:YAG
lasers (Continuum Lasers YG660B-20). The double-pulsed images were photographed
using a side-viewing 100 mm× 125 mm large-format photographic camera focused on
the light sheet with a magnification of 0.826 (see figure 1). The camera lens was a
300 mm focal length f/5.6 Zeiss. The large-format photographic camera was used to
achieve dynamic spatial range and dynamic velocity range each in excess of 100 : 1.
Without a dynamic spatial range of this order, many of the results reported in this
paper, which involve simultaneous observation of large and small eddies, would not
be observable.
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The double-exposed PIV photographs were analysed using the interrogation
system described by Meinhart, Prasad & Adrian (1993) and Meinhart (1994). During
interrogation, a subregion of the PIV photograph was imaged with a 1320×1035 pixel
Videk Megaplus 1.4 CCD camera, and digitized with an 8-bit Imaging Technol-
ogy VSI-150 frame grabber. The subregion was further divided into eight smaller
subimages, and each subregion was passed to one of eight 80 MFLOP i860 ar-
ray processors for analysis. Each array processor calculated twenty 128 × 128 pixel
correlation functions per second. In practice, system overhead limited the overall
interrogation speed of the eight parallel processors to about 100 velocity vectors
per second. After the particle images in each subregion of the photograph were
digitized, the photograph was automatically translated using a stepper motor, and
a new subregion of the photograph was digitized. This process was repeated until
the entire photograph was analysed, usually taking about three minutes to measure
20 000 vectors.

The local particle–image displacement was determined using the cross-correlation
method described by Meinhart et al. (1993). The first cross-correlation window defines
the spatial resolution of the velocity measurement. Its size was adjusted to be small
enough to resolve the energy-containing motions, while still being large enough for
strong PIV signal-to-noise (typically containing at least 10 particle–image pairs).
The second cross-correlation window was chosen to be slightly larger and offset
from the first cross-correlation window. The windows were chosen so that particles
with first exposure images in the first cross-correlation window also had second
exposure images in the second cross-correlation window. The interrogation cells were
overlapped by 50% in each direction to satisfy Nyquist’s sampling criterion (Meinhart
et al. 1993).

The particle–image displacement of each interrogation cell was determined from the
cross-correlation function by: (i) removing the self-correlation peak, (ii) identifying
the next three largest correlation peaks as possible displacement peaks, and (iii) fitting
a parabolic curve to each of the three possible displacement peaks to determine the
location of each peak to within subpixel accuracy. The largest of the three possible
displacement peaks was considered to be the actual displacement peak, while the
other two peaks are retained as alternative displacement peaks that could be used for
vector validation.

After a vector field has been calculated by interrogating a double-exposed PIV pho-
tograph, it was validated to remove erroneous velocity vectors that might have been
detected incorrectly during interrogation owing to random noise in the correlation
function. Both linear and nonlinear filters were used for validation. First, erroneous
velocity vectors that lay outside a specified number of standard deviations from the
mean velocity were tagged and removed. Typically, the tolerance was between 3.5 and
4.0 standard deviations from the mean. For this filter, the mean and root-mean-square
velocities were calculated by averaging over the entire vector field, or by averaging
over single rows or columns of velocity vectors in the vector field.

A median filter was used to identify erroneous velocity vectors which were not
necessarily large in magnitude, but did not fit consistently with the neighbouring
velocity field. The median average of each 3 × 3 neighbourhood was calculated and
compared to the vector in the centre of the neighbourhood. If the centre vector did
not agree to within a specified value of the median, it was tagged as erroneous and
removed (Westerweel 1994).

After the erroneous velocity vectors were removed, the alternatively measured (sec-
ond and third highest correlation peaks) velocity vectors were analysed to determine
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Number of Number of
Reθ realizations vectors ∆x+ ∆y+ ∆z+ y+

min ymin/δ xmax/δ ymax/δ

930 60 11 700 9.0 9.0 0.9 9.0 0.025 1.5 1.2
2370 115 12 500 20 20 2.0 20.2 0.025 1.4 1.3
6845 65 26 500 36 25 5.1 38.9 0.013 1.4 1.4

Table 2. Resolution of the PIV experiments.

if one of them was the true velocity vector. An alternatively measured velocity vector
was accepted if it lay within a specified number of standard deviations from the mean
(typically 2 standard deviations), and it also fit better with the median average of the
3× 3 neighbourhood than the original velocity vector.

Empty data cells occurred when erroneous velocity vectors were removed and
no alternatively measured velocity vector was found. They were either filled with an
interpolated velocity vector or, when there was an insufficient number of neighbouring
vectors to permit reliable interpolation, they were left blank. White noise was removed
from the velocity vector field by low-pass filtering the two-dimensional field with a
round Gaussian kernal whose e−2 radius was 80% of the vector grid spacing.

The photographic technique resolved between 10 000 and 26 500 instantaneous
velocity vectors in an area extending from the wall to y/δ = 1.2–1.4, and covering
a length of x/δ = 1.4–1.5 in the streamwise direction. The small scales of motion
were resolved by independent PIV measurement volumes whose physical dimensions
(∆x,∆y,∆z) corresponded approximately to (∆x+,∆y+,∆z+) = (9, 9, 0.9) at the lowest
Reynolds number and (∆x+,∆y+,∆z+) = (36, 25, 5.1) at the highest Reynolds number
(see table 2). The spatial resolution at either Reynolds number, but especially at
the highest Reynolds number, was not adequate to resolve the smallest scales of
motion near the wall. For y+ > 100, the resolution in the wall-normal direction
ranged from 3.2 to 5.2 Kolmogorov lengthscales. Therefore, the PIV measurements
must be considered low-pass filtered estimates of the true velocity field. Fortunately,
they are adequate to resolve the energy containing motions in the outer region. The
interrogation spots of the PIV measurements reported here are overlapped by 50%,
to minimize aliasing of the velocity signal (Adrian 1991) and to provide velocity
information at every point on a 1 mm× 1 mm grid.

2.3. PIV accuracy

Recall that thermal anemometer velocity measurements taken in the free stream
showed that the turbulence intensity of the free stream was negligibly small. The
PIV measurements taken in the free stream show turbulence intensities of the order
of 0.005U∞. This suggests that the root-mean-square background noise of the PIV
velocity measurements was less than 0.5% of the free-stream velocity.

Prasad et al. (1992) showed that when particle images are resolved well during
digitization (i.e. the ratio of particle-image diameter dτ to the size of a CCD pixel
on the photograph, dpix, is dτ/dpix > 3–4), the uncertainty of the measurements
is roughly one-tenth to one-twentieth of the particle-image diameter. The average
particle-image diameter measured on the PIV photographs with a microscope was
approximately dτ = 50 µm. This implied that the pixel resolution for the experiments
was in the range 3.13 < dτ/dpix < 3.85. Therefore, the particle images were adequately
resolved, and the uncertainty in the measured displacement was roughly one-tenth
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Figure 2. Mean streamwise velocity profiles scaled and plotted with inner variables, for �,
Reθ = 930; N, 2370; •, 6845; (i) U+ = y+; (ii) U+ = 2.44 ln (y+) + 5.1; (iii) Spalding (1961).

the diameter of the particle image, or about 5 µm. Normalizing this uncertainty with
the mean displacement of the particles in the free-stream yields a relative error less
than 1%.

3. Average properties of the boundary layer
The principal objective of this work is to explore the structure of the outer

region using PIV to obtain quantitative images of the velocity field, a task at which
photographic PIV excels. Photographic PIV data are less ideal for statistical analysis
because it is tedious to obtain and analyse the large number of photographs needed
for good statistical stability of the averages. The present PIV technique typically limits
the number of practically obtainable photographs (i.e. independent realizations) to
order 100. Since the integral lengthscale of the flow is of the same order as the
measurement domain of a single photograph, each vector field was essentially one
statistically independent realization. Therefore, in an ensemble of 100 photographs,
the number of independent samples, of order 100, was not large enough to obtain
fully converged statistics for higher-order moments, such as Reynolds shear-stress,
skewness, and flatness. Even so, statistically averaged results will be presented because
it is necessary to establish that the present boundary layer had properties that were
typical of zero-pressure-gradient boundary layers in general, and to validate the PIV
measurements to within the accuracy allowed by the statistical convergence of the
averages.

Figure 2 shows the mean streamwise velocity profiles estimated by ensemble aver-
aging the instantaneous velocity vector fields over 60–100 photographic realizations
and integrating the results in the streamwise direction. The inner-variable scales were
determined by estimating the friction velocity, u∗, using the chart method of Clauser
(1956). (Although it is now suspected that the Clauser chart method has shortcom-
ings, we have used it to permit consistent comparison with published data.) The
mean velocity profiles show the expected logarithmic behaviour for 30y∗ < y < 0.25δ.
The mean velocity profile for Reθ = 930 agrees well with Spalding’s (1961) formula
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Figure 3. Root-mean-square streamwise velocity profiles scaled with inner variables and plotted
with outer variables �, Reθ = 930; N, 2370; •, 6845; O, Balint et al. (1991); �, Naguib & Wark
(1992); – – –, Spalart (1988) Reθ = 670; − · −, Spalart (1988) Reθ = 1410.

for the buffer region down to y+ = 10, corresponding to the resolution of the PIV
measurement volume.

The root-mean-square streamwise velocity is scaled with u∗ and plotted in outer
variables in figure 3. The momentum thickness,

θ =

∫ ∞
0

U

U∞

(
1− U

U∞

)
dy (1)

is chosen as the outer variable to scale wall-normal distance because it can be
determined more precisely from experimental data than the boundary-layer thickness
δ. The root-mean-square streamwise velocity data agree reasonably well with the
results of Balint, Wallace & Vukoslavcevic (1991), Naguib & Wark (1992) and
Spalart (1988), especially in the outer region for y/θ > 5 (to within the differences
that exist between these data). Using only the present PIV data (denoted by solid
symbols), there appears to be a slight increase in root-mean-square velocity with
increasing Reynolds number. According to Klewicki (1989), this Reynolds-number
dependence is expected, provided that the spatial resolution of the velocity probe does
not significantly attenuate the high wavenumber components of the velocity field at
the higher Reynolds numbers.

In figure 4, the root-mean-square wall-normal velocity scaled with u∗ is plotted
against outer variables. The data agrees with the data of Balint et al. (1991), but
they are consistently higher than Spalart’s (1988) data. The differences may be
due to Reynolds-number effects. The lowest Reynolds number of the present data,
Reθ = 930, agrees reasonably well with Spalart’s (1988) highest Reynolds number
Reθ = 1410. The rest of the data, including that of Balint et al. (1991), are all at higher
Reynolds numbers than Spalart’s data, and have correspondingly higher values of
root-mean-square velocity.

The Reynolds shear stress, figure 5, and the correlation coefficient, figure 6, compare
well with the data of Balint et al. (1991) and Spalart (1988) for all Reynolds numbers.

Spanwise vorticity has been calculated at each point in the velocity field by: (i)
defining a 3×3 neighbourhood centred about the point-in-question; (ii) calculating the
circulation about the point-in-question by line-integrating the scalar product of the
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Figure 4. Root-mean-square wall-normal velocity profiles scaled with inner variables plotted with
outer variables �, Reθ = 930; N, 2370; •, 6845; O, Balint et al. (1991); – – –, Spalart (1988)
Reθ = 670; − ·−, Spalart (1988) Reθ = 1410.

1.5

1.0

0.5

0 2 10 12
y/θ

84 6

–
-u

«v
«./

u2 *

Figure 5. Reynolds shear-stress scaled with inner variables and plotted with outer variables for
�, Reθ = 930; N, 2370; •, 6845; O, Balint et al. (1991); − ·−, Spalart (1988) Reθ = 1410.

velocity vectors and the differential vector length over the eight surrounding vectors;
and (iii) dividing by the area of the cell. Root mean square spanwise vorticity is
then calculated by: (i) subtracting the mean vorticity from the instantaneous vorticity
fields; (ii) ensemble-averaging the mean square of the fluctuating vorticity point-by-
point; (iii) line-averaging the ensemble mean square vorticity field, and (iv) taking the
square-root of the averaged products.

The appropriate scale with which to normalize vorticity is problematic. Klewicki &
Falco (1990) determined that with adequate spatial resolution, the root-mean-square
spanwise vorticity scaled with inner variables, for 1000 < Reθ < 5000 for all values of
y/δ; but Balint et al. (1991) found a contrasting result. They compared root-mean-
square spanwise vorticity profiles with several other published results and found that
outer variables, U∞ and δ, collapsed vorticity profiles better than either inner variables
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N, 2370; •, 6845; O, Balint et al. (1991); /, Klewicki (1989) Reθ = 2870; − · −, Spalart (1988)
Reθ = 1410.

or mixed variables. They suggested that outer variables may be appropriate because
the overall mean circulation in the boundary layer is determined by the free-stream
velocity and the boundary-layer thickness.

Figure 7 shows root-mean-square spanwise vorticity scaled with outer variables.
For y/δ < 0.1 the root-mean-square vorticity measured by PIV does not decrease
as rapidly with increasing distance from the wall as the results reported by Balint
et al. (1991), Spalart (1988), or Klewicki & Falco (1990). This is probably due to
inadequate resolution of the PIV technique very near the wall. Away from the wall,
for y/δ > 0.25, the present PIV data lie between the data of the other investigators.

Figure 8 shows root-mean-square spanwise vorticity, ωz , scaled and plotted with
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inner variables. Both the PIV results and the results of Klewicki & Falco (1990)
show a decrease in root-mean-square spanwise vorticity with increasing Reynolds
number, which may result from low spatial resolution, errors in measuring friction
velocity, and/or spanwise vorticity not completely scaling with inner variables. In
summary, above y/δ = 0.1 the PIV vorticity data are consistent with the data of
other experiments to within existing experimental uncertainty. Below this level, the
PIV data are not spatially resolved and small-scale features of the measured flow field
should only be interpreted qualitatively.

4. Visualization of the velocity vector fields
The interpretation of planar velocity vector fields is complicated by the random lo-

cation of the structures in the streamwise and spanwise directions. Spanwise random-
ness implies that the planar data correspond to random samples of x–y cross-sections
of the structures at various spanwise locations with respect to the structures. In the
context of the present experiments, this difficulty can only be treated by hypothesizing
three-dimensional structures that are consistent with the observed planar data and
with the results of other studies. While structures inferred in this way are subject to
some uncertainty, they are, nonetheless, better founded than structures inferred from
one-dimensional data, as in most previous quantitative experimental studies.

4.1. Frame of reference and identification of vortices

A more subtle aspect of the interpretation of vector fields, two-dimensional or three-
dimensional, is that the perceived flow structure depends on the way in which the
velocity field is decomposed. In part, this is tied up with the problem of identifying
vortical structures which has been the subject of much recent effort (Jeong & Hussain
1995; Chong, Perry & Cantwell 1990; Zhou et al. 1999). For the purposes of this
paper it will be sufficient to follow Kline & Robinson (1989) by defining a vortex
as a region of concentrated vorticity around which the pattern of streamlines is
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roughly circular when viewed in a frame moving with the centre of the vortex. It
has been shown (Adrian, Christensen & Liu 2000) that the foregoing method of
identifying sections through vortices yields results that compare well with the vortex
identification methods of Jeong & Hussain (1995), Chong et al. (1990) and Zhou et
al. (1999) when applied to the vortices in wall turbulence. The combined criterion of
circular streamlines in the frame moving with the vortex and concentrated vorticity
leads to reliable identification by effectively eliminating regions of vorticity associated
with shear and swirling regions that are non-vortical. Thus, while the methods cited
above are kinematically more sophisticated, their application in this study has little if
any effect on the conclusions to be drawn.

The issues of visualization will be illustrated and explained using the data in figure
9 for a single realization of the turbulent boundary layer at Reθ = 6845. Consider first
the grey level plot of spanwise vorticity in figure 9(a). It contains many regions of
concentrated vorticity. Some of the weaker fluctuations may be noise in the vorticity
measurements, so we will concentrate on the strongest regions only. Some regions
are elongated, but many are roughly circular, making them candidates for sections
through vortices. Several (but not all) of them have been labelled A–F.

The simplest possible approach for wall flow is to decompose the field into a
constant streamwise convection velocity plus the deviations therefrom. The deviation
vectors are equivalent to the vectors seen in a frame of reference moving at the
convection velocity. Since the Navier–Stokes equations are Galilean invariant, there
is no dynamical basis for preferring one frame over another, and we are at liberty
to use the convective frame that provides the best visualization of the vector field. In
figures 9(b) and 9(c) the velocity vector field corresponding to figure 9(a) is shown
after subtracting, respectively, convection velocities Uc = 1.0U∞ and Uc = 0.8U∞. In
figure 9(b) the vectors generally have negative streamwise components relative to the
free-stream velocity, as expected. At the instantaneous edge of the boundary layer
in figure 9(b), it is possible to observe a pattern of nearly circular streamlines that
coincides with the vorticity concentration labelled A in figure 9(a). Following the
criteria adopted above, we interpret this to be a cross-section through a concentrated
vortex. The regions labelled B and C also contain concentrated vorticity, but their
velocity pattern is barely circular in figure 9(b) because their convection velocities
differ from U∞ by about 10%. If the convection velocity is changed appropriately, the
velocity vector pattern of B or C does look circular and the centre coincides with the
maximum vorticity. Unlike regions A–C, the regions of concentrated vorticity labelled
D, E and F are not even remotely circular vortices in the frame of reference used in
figure 9(b).

Now consider figure 9(c). It is the same vector field as figure 9(b), except Uc = 0.8U∞.
In this frame of reference, the vortex structures A, B, and C can no longer be identified
with circular streamlines, nor can the other regions of concentrated vorticity D, E
and F. Instead, a series of near-wall shear layers, visible as dark bands inclined at
30–50◦ to the wall, can be observed below y/δ = 0.1 in the region where vorticity
concentrations D–F reside. They are associated with Q2 events. The same pattern
exists in figure 9(b), but it is much less apparent owing to the large negative velocity
of the near-wall vectors in that frame. The inset to figure 9(c) shows a magnified view
of the vector field associated with the three vorticity maxima D, E and F using a
convection velocity of Uc = 0.6U∞. When depicted in this manner it is clear that the
inclined shear layers are associated with the compact, circular vortex patterns labelled
D, E and F in the inset. Since each of these vortex patterns has zero velocity at its
centre, their streamwise speed of translation must be approximately Uc = 0.6U∞.
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The foregoing example shows that the vector field pattern associated with an
approximately circular concentration of vorticity, i.e. a vortex core, appears to be a
circular streamline pattern if and only if the convection velocity matches the velocity
at the centre of the vortex. That is, the convection velocity must be equal to the
velocity with which the vortex pattern is translating in order for the velocity pattern
to look like a vortex.

Various investigators have reported discrepancies between the locations of vorticity
maxima and the apparent centres of rotation of the velocity vector patterns, from
which they concluded that a compact local maximum of the vorticity is not a reliable
indicator of the presence of a vortex. However, our experience has been that when
viewed in a convecting frame that makes the vector pattern look most like that of a
compact circular vortex, the location of the local maximum of the vorticity coincides
closely with the zero vector of the vector pattern. Thus, by systematically changing
the convection velocity in small increments such as 0.05U∞ while viewing each PIV
vector field and its associated vorticity field on a high-resolution computer monitor,
all of the compact vortices in figure 9(a) can be identified.

Reynolds decomposition by subtracting the long-time-averaged velocity field from
the instantaneous velocity field is the traditional technique for decomposing turbulent
velocity fields. It has been used almost universally for analysis of turbulent signals,
and it is a natural approach from a mathematical viewpoint. We find, however,
that when interpreting the structure of instantaneous velocity vector fields, Reynolds
decomposition often distorts the instantaneous structure, and in certain situations,
may actually mislead the analysis (Adrian et al. 2000). Figure 9(d) shows the Reynolds
decomposition of the velocity field. While certain features in figures 9(b) and 9(c)
can also be observed in figure 9(d), many of the structural elements are distorted,
especially in the vertical direction near the wall where the mean velocity profile has
a high rate of curvature. For example, the inclined shear layers that occur in the
range 0.05 > y/δ > 0.1 in figure 9(c) are less evident in the Reynolds-decomposed
vector field. If the vortices travel with the long-time-averaged mean velocity, the
mean velocity would be the same as the local convection velocity, and the fluctuating
field obtained by Reynolds decomposition would reveal the vortices clearly. This
procedure should work when the turbulent flow can be adequately described by a
mean plus small random fluctuations. However, in the case of boundary-layer flows,
the turbulence intensity is relatively large near the wall. We have examined several
hundred realizations in the streamwise wall-normal plane, and we have found very few
realizations in which the profiles of the streamwise velocity even vaguely resemble the
long-time-average mean velocity profile. As a consequence, the Reynolds decomposed
fluctuating field is less readily interpreted.

The principles illustrated by the single realization in figure 9 are supported by
experience with thousands of vector fields in this and other PIV studies. Examining
velocity vector fields with many different Galilean frames of reference provides a more
physical representation of the turbulent flow field than examining vector fields using
Reynolds decomposition. Therefore, in studying the experimental vector fields and
in arriving at the conclusions to be presented, we have examined each instantaneous
realization by subtracting up to 20 different constant convection velocities before
drawing conclusions about the instantaneous structure of the flow field. The simplest
rule we have found is that at a given convection velocity, the patterns of those vortex
cores that are moving with velocity equal to the selected convection velocity can be seen.
With changing convection velocity, the vortices in different regions of the flow become
more or less apparent.
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Figure 9(a, b). For caption see facing page.

Vector fields viewed in different Galilean frames have additional properties that are
useful for interpretation. First, velocity vectors having streamwise components nearly
equal to the convection velocity are small in magnitude, and regions containing
such vectors generally appear light to the eye. In contrast, regions in which the
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Figure 9. Streamwise wall-normal velocity vector field at Reθ = 6845 shown using several different
types of vector decomposition: (a) spanwise vorticity; (b) vectors viewed in a frame of reference
convecting at Uc = 1.0U∞; (c) vectors viewed in a frame-of-reference convecting at Uc = 0.8U∞;
(d) Reynolds decomposed fluctuating vectors.
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streamwise velocity differs greatly from the convection velocity appear dark because
they consist of long positive or negative velocity vectors. One advantage of Galilean
decomposition, as opposed to Reynolds decomposition, is that relative shears between
adjacent structures in the flow are preserved. Secondly, the invariance of the Navier–
Stokes equations under Galilean transformation means that the fluctuations about
the convection velocity can be interpreted directly in terms of the Navier–Stokes
equations without modification for the mean Reynolds stress.

4.2. Hairpin vortex signatures

The flow pattern associated with the vortex labelled A in figure 9(a) and the vortices
in the inset to figure 9(c) possess important additional characteristics. Below and
upstream of the circular streamlines in each pattern there is a region of strong
second-quadrant vectors (u − Uc < 0 and v > 0) which occurs on a locus that
is inclined at roughly 45◦ to the x-direction. The spatial extent of the region of Q2
vectors is approximately the same as the diameter of the region of circular streamlines,
and the velocity vectors in the Q2 region are directed at approximately 135◦ to the
x-direction. Note these ejections are also visible in the Reynolds decomposed field
(figure 9d), as their associated vortices happen to be convecting at a speed close to
the long-time average.

Figure 10(a) schematically depicts the qualitative signature of the velocity field
induced by an idealized (not necessarily symmetric) hairpin vortex on a streamwise–
wall-normal plane that cuts through the centre of the hairpin. It is assumed that
the hairpin is attached to the wall. Following Robinson (1991, 1993) the various
parts of the hairpin are called the head, neck and legs, the latter being prominent
in the wall buffer layer. The velocity pattern in an x–y cross-section of the hairpin
contains the following features: (i) a transverse (i.e. spanwise) vortex core of the head
rotating in the same direction as the mean circulation; (ii) a region of low-momentum
fluid located below and upstream of the vortex head, which is the induced flow
associated with the vorticity in the head and neck; (iii) an inclination of this region at
approximately 35–50◦ to the x-direction below the transverse vortex and more nearly
tangent to the wall as the wall is approached. In the buffer layer, the legs of the
hairpin become quasi-streamwise vortices that induce low momentum fluid upwards.
Similar behaviour has been found in direct numerical simulations (Adrian, Moin &
Moser 1987; Kim 1987), wherein the quasi-streamwise vortices cause fluid from the
viscous boundary layer at the wall to lift away from the wall and form the near-wall
low-speed streaks that are commonly observed in the buffer layer (Robinson 1993).
Frequently, a fourth-quadrant Q4 event (u−U > 0, v 6 0) is observed to oppose the
Q2 event, forming a stagnation point and an inclined shear layer upstream. A Q4
event observed in a frame convecting with the eddy can be explained if the hairpin
either lies in the downwash of an upstream eddy, or if it propagates more slowly than
the surrounding fluid.

A pattern containing the elements described above (circular streamlines, a strong
Q2 event in a region having approximately 45◦ inclination, and a Q4 event with a
stagnation point) is consistent with the vector pattern that would be seen if the laser
light sheet of the PIV cut through the mid-plane of a hairpin vortex. It is idealized
in figure 10(b). These two-dimensional patterns have been clearly associated with
three-dimensional hairpins in homogeneous shear flow (Adrian & Moin 1988) and in
conditionally averaged three-dimensional fields of wall turbulence when conditioned
on the occurrence of a Q2 event, i.e. a second-quadrant vector (Adrian et al. 1987;
Adrian 1996; Zhou et al. 1999). For this reason, we shall refer to a velocity vector
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Figure 10. (a) Schematic of a hairpin vortex attached to the wall and the induced motion.
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pattern having a circular vortex with an inclined region of Q2/Q4 vectors beneath
it (figure 10b) as a hairpin vortex signature, or HVS. A hairpin would not need to
be symmetric in order to induce this pattern of motion, so the HVS can also be the
signature of an asymmetric hairpin (or ‘cane’ vortex in the terminology of Robinson
1991, 1993). A second HVS can be seen at the edge of the boundary layer near
x/δ = 0.5 in figure 9.

The hairpin vortex signature is fully consistent with the existing body of results
on the structure of wall turbulence. In particular, the transition from a Q2 to a
Q4 event is consistent with the VITA event that is normally used to identify a
turbulent bursting process (Robinson 1991). The stagnation point on the inclined
shear layer upstream of each hairpin is the centre of a transition from the Q2 event
under the head of the hairpin to an upstream Q4 event. As shown by Wallace et
al. (1977), this is the site normally identified by the VITA analysis of Blackwelder &
Kaplan (1976). Imagine the hairpin passing over a fixed single-point probe located at
approximately the height of the stagnation point. Initially, the u- and v-velocities are
weak. As the hairpin approaches the probe, the streamwise velocity would become
increasingly negative and the v-component would become positive owing to the
upward induced flow under the head of the hairpin. When the stagnation point
on the shear layer behind the hairpin reaches the probe, both components would
vanish and change signs immediately thereafter. Upstream of the shear layer the
u- and v-components would become increasingly positive and negative, respectively,
then decay as the hairpin moved further downstream of the probe. This description
also coincides closely with the pattern recognition (TPAV) results of Wallace et al.
(1977).

The present (x, y)-plane data are ill-suited to revealing quasi-streamwise vortices,
but the computations of Zhou et al. (1996, 1997, 1999) and the work of Smith (1984)
and Smith et al. (1991) clearly indicate that when viewed properly, the hairpin vortices
that appear close to the wall have long legs that are the quasi-steamwise wall vortices
associated with the low-speed streaks in the buffer layer. Hairpin vortices that occur
far from the wall, such as those labelled A–C in figure 9(a) may not possess quasi-
streamwise vortex legs, being instead more similar to those seen in homogeneous
turbulent shear flow (Adrian & Moin 1988).

5. Structure in the outer region
5.1. Frequency of hairpin vortex signatures

We find that there are many hairpin vortex signatures in each of the vector fields
measured at each Reynolds number. In fact, the hairpin vortex signature is the single
most readily observed flow pattern in the (x, y)-plane data. The reader can confirm this
by looking ahead to the vector fields that will be presented for the various Reynolds
numbers, bearing in mind that the depiction of a vector field for any one value of
the convection velocity does not clearly show all of the hairpin vortex signatures.
This point is demonstrated clearly by figure 9(a) in which there are many regions of
concentrated vorticity, almost all of which correspond to a hairpin vortex signature
when viewed in the proper frame of reference.

The discussion of structure will be restricted to the outer region, y+ > 30, where
the PIV measurements have been shown to be reliable. This region excludes much
of the quasi-streamwise vortex portion of a near-wall hairpin. All PIV fields will be
shown in a frame having fixed physical dimensions, corresponding to outer scaling.
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Figure 11. Near-wall realization at Reθ = 930 showing four hairpin vortex signatures aligned in
the streamwise direction. Instantaneous velocity vectors are viewed in a frame-of-reference moving
at Uc = 0.8U∞ and scaled with inner variables. Vortex heads and inclined shear layers are indicated
schematically, along with the elements triggering a VITA event.

5.2. Hairpin vortex packets

A primary conclusion drawn from the present experimental observations is that
hairpin vortex signatures very frequently occur in groups, and that the individuals
within these groups propagate at nearly the same streamwise velocity, so that they
form a travelling packet of hairpin vortices. Figure 11 provides a clear example of this
behaviour from the Reθ = 930 boundary layer. The velocity-vector map is viewed in
a convective frame of reference Uc = 0.8U∞. Four vortices, denoted A–D, are located
in the range 80 < y+ < 140, with streamwise spacing of 120–160 viscous wall units.
(In this and future diagrams, the nominal tops of the logarithmic layer and buffer
layer are indicated by yL = 0.25δ and yB = 30y∗, respectively.) Spanwise vortices B,C
and D each possess the characteristics of a hairpin vortex signature. The fact that all
of the vortex heads are nearly circular means that they are being viewed in a frame
that is moving with the convection velocity of the heads. Put another way, each of
the heads circled in figure 11 is moving at approximately Uc = 0.8U∞, i.e. the four
hairpins are moving together as a packet. The essential elements of the packet pattern
are indicated schematically, as well as the elements comprising a VITA event. The
inclined shear layers associated with the vortices are identified visually as the locus
of points across which the vector direction changes abruptly. They are indicated by
solid lines.

Examination of several hundred instantaneous velocity-vector fields reveals, for
each of the Reynolds numbers studied, that it is common to see multiple hairpin
vortex signatures in close spatial proximity to each other in the streamwise direction
and convecting with nearly the same velocity. (Histograms of the convection velocity
indicate that the velocity dispersion is less than 10% of the free-stream velocity.) In
fact, we find at least one hairpin vortex packet in 85% of all PIV images. Next to the
hairpin vortex signatures, the hairpin vortex packets are the most commonly observed
structure in our wall turbulence data, and like the individual vortices they have some
variation in group convection velocity from packet-to-packet at a given y-location.

The patterns that are identified as the signatures of hairpin packets in near-wall
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Y

X

Z

Figure 12. Hairpin vortices computed by Zhou et al. (1999). The velocity vector field in the plane
lying midway between the legs is qualitatively similar to the hairpin vortex signature shown in
figures 10(b) and 11.

boundary-layer turbulence compare very well with the x, y patterns associated with
the hairpin packet computed for channel flow by Zhou et al. (1999). Figure 12
shows a computational result for the packet that evolves out of a single hairpin-like
initial disturbance. The largest hairpin in the packet is the primary hairpin that
gave birth to the packet. It has spawned complete secondary hairpins both upstream
and downstream, and the upstream hairpin is in the process of spawning tertiary
hairpins, one close to the wall, and one closer to the neck of the secondary. The
flow pattern in the (x, y)-plane passing through the middle of the packet possesses
all of the same characteristics as the patterns observed in the experimental boundary
layer: vortex heads, inclined regions of Q2 vectors, stagnation points, and inclined
shear layers upstream of each hairpin. This point-by-point similarity provides a strong
basis for associating the two-dimensional patterns observed in our experiments with
three-dimensional packets of the general form of the one shown in figure 12.

Streamwise histories of streamwise velocity, wall-normal velocity, and Reynolds
stress of the field in figure 11 at y+ = 30, 50 and 100 are given in figure 13. The
characteristic features of the hairpin vortex signatures in figure 11 create clear imprints
in the streamwise variation. For example, at y+ = 50 the streamwise velocity profile
exhibits three peaks of low momentum (at x+ = 100, 290 and 420), each of which
corresponds to fluid directly underneath the heads of hairpins B, C and D. This fluid
has low momentum because it is being ejected away from the wall by the hairpins,
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Figure 13. Traces of the instantaneous ——, u′; – – – , v′; and − ·−, u′v′ through the vector field in
figure 11 show that the form of the VITA event is associated with the signature of a hairpin vortex;
(a) y+ = 30; (b) y+ = 50; (c) y+ = 100. Reθ = 930.

i.e. the v-component is positive. The regions along the x-axis at which the u- and
v-components change signs correspond to the stagnation points on the shear layers.
The maximum values of the instantaneous product −uv occur fore and aft of the
stagnation points, making these regions critically important to the creation of mean
Reynolds shear stress. Note that as the wall is approached, the quasi-streamwise legs
begin to contribute long regions of Q2 events by pumping very low-momentum fluid
up from the viscous layer, cf. figure 13(a).

As noted above, the profiles of streamwise and vertical velocity created by a single
hairpin resemble the pattern-recognized velocity profiles found using time histories
measured by hot-wire anemometry (Wallace et al. 1977). However, a number of
studies, most notably Bogard & Tiederman (1986), Luchik & Tiederman (1987), and
Tardu (1995), have observed further that several Q2 events often occur in temporal
succession. In their words, a turbulent burst consists of multiple Q2 events. The
hairpin vortex packet paradigm offers a simple explanation for this behaviour. Each
Q2 is associated with a hairpin, and the clustering of the Q2s corresponds to the
hairpins occurring in packets. The streamwise profiles in figure 13 are very similar to
the temporal histories on which Bogard & Tiederman (1986), Luchik & Tiederman
(1987), and Tardu (1995) based their work if Taylor’s hypothesis is used to convert
the streamwise coordinate to time.

Examples of hairpin packets at each Reynolds number are shown in figures 14–16.
The convection velocity in these figures lies in the range 0.80–0.82U∞, and, in each
figure, the vortex heads that convect at this velocity have been circled. Each circled
vortex is associated with the usual hairpin vortex signature, and in addition, there
are many other Q2 events associated with vortices that convect at different velocities,
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such as vortex D in figure 14. In each vector plot, it is clear that a packet of hairpins
occurs between the wall and the top of the logarithmic layer. Hairpin packets are
observed most clearly, and hence most frequently in this region, probably because
some of the vortices farther away from the wall are less intense, and therefore less
readily visualized.

5.3. Hairpin packets and zones of uniform momentum

As noted in § 1, a remarkable feature of the turbulent boundary layer reported by
Meinhart & Adrian (1995) is the fact that large, irregularly shaped regions of the
flow have relatively uniform values of the streamwise momentum that are separated
by thin regions of large ∂u/∂y. (The term ‘zones’ was used to emphasize that these
unsteady regions are defined in terms of instantaneous vector fields, in contrast to
‘layers’ such as the logarithmic layer that are defined in terms of average quantities
and therefore have constant dimensions.) Analysis of the complete set of data studied
here indicates that 75% of the PIV fields contain zones having these properties.

In figures 14–16 the uniform momentum zones have been separated by hand-
drawn lines and labelled zones I, II and III. The lines pass through the centres of the
heads of the hairpin vortices. With careful inspection, the region above zone II can
often be subdivided into more than one additional zones, as in Meinhart & Adrian
(1995), but for present purposes it suffices to recognize this fact without pursuing the
details further. In the figures, the velocity vectors in zone II are small because their
streamwise velocities are nearly equal to 0.8U∞ while the velocity vectors in zones
I and III have streamwise components of velocity that are significantly lower and
higher than 0.8U∞, respectively. The logarithmic layer contains both zone I and zone
II. Contours of the u-component in figures 14(b)–16(b) provide a direct way of seeing
the zones, and validate the hand-drawn boundaries indicated in the vector fields.

The coincidence between the heads of the hairpins and the boundaries between
the zones of uniform momentum clearly demonstrates an association between hairpin
packets and uniform momentum zones. This association is further substantiated by the
data in figure 17 that show how the hairpin heads create regions of large ∂u/∂y along
the boundaries between uniform momentum zones. In this figure, vertical profiles
of streamwise velocity are superimposed on the ∂u/∂y contours. The streamwise
component of velocity usually changes significantly between zones, but remains
roughly constant within a zone.

Meinhart & Adrian (1995) suggest that the long region of uniformly retarded
flow in each zone is the backflow induced by several hairpins that are aligned in a
coherent pattern in the streamwise direction. The evidence presented here provides
substantially deeper support for this interpretation, and it justifies extending the
coherent vortex packet paradigm. In the extended view, the induced flow from each
vortex adds coherently with the flows from succeeding vortices in a packet to create a
region of low momentum that is significantly longer than the low-momentum region
induced by any single hairpin. In this way, small structures (hairpins) combine to
create structures that are long in the streamwise direction. As they grow, the packets
also become large in the wall-normal and spanwise directions, but this growth is
associated with the growth of individual hairpins, whereas the streamwise growth
depends essentially upon the coherent alignment of successive hairpins. It should be
emphasized that the alignment is not perfect, because the asymmetry of the initial
hairpin leads to a meandering locus of the hairpins that are created subsequently
(Zhou et al. 1999).

Packets may also align with other packets to create even longer zones. Therefore,
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Figure 14. Realization of the Reθ = 930 boundary layer showing hairpin vortex heads along
the boundaries separating regions of uniform-momentum fluid. The black lines separate the flow
field into zones, labelled I, II and III, in which the streamwise momentum is nearly uniform: (a)
instantaneous velocity vector map viewed in a convecting frame of reference Uc = 0.8U∞ and scaled
with inner variables, (b) contours of constant u-momentum.
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Figure 15. As figure 14, but Reθ = 2370.

a single zone of uniform momentum may be the manifestation of more than one
packet. The low-momentum zones observed in this study extend far above the low-
speed streaks observed in the buffer layer by Kline et al. (1967), and the evidence
presented for low-momentum zones should not be confused with the older evidence
for buffer-layer streaks. Note, however, that the buffer-layer streaks are a part of the
low-momentum-zone phenomenon.
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The probability density histograms of the streamwise component of velocity found
by accumulating the data over the entire area of each realization in figures 14(a)–16(a)
are plotted in figure 18. Zones identified in figures 14–16 manifest themselves clearly
in the form of local maxima of the histograms, each maximum being associated with
a relatively narrow distribution of streamwise momentum that occurs in each zone.
We refer to the distribution of velocities associated with each maximum as a mode,
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and the value of the velocity at which the histogram has a local maximum as the
modal velocity. Many turbulence investigations have measured the probability density
functions of fluctuating velocity. This type of measurement typically involves: (i)
calculating the probability density function using Reynolds decomposed fluctuating
velocity vectors; (ii) time averaging the probability density function over a long
period; and (iii) averaging the probability density function at only a single wall-normal
position. Any one of these standard operations tends to smooth the probability modes
found by the present histogram analysis, rendering them unobservable. Reynolds
decomposition subtracts that portion of the mean velocity that is, in fact, caused
by momentum differences between the zones. To see this, observe how the Reynolds
decomposed field in figure 9(d) removes the evidence of the uniform momentum zones.
Ensemble averaging over many realizations smoothes because the maxima are located
at different velocities from one realization to the next. Averaging over a long distance,
or a long time, at constant y ultimately cuts through many zones and has the same
effect as ensemble averaging. Thus, while the histogram analysis performed here is
unconventional, it is a more useful means of extracting information about individual
momentum zones than the conventional approach. It does, however, depend upon
the extent of the field of view.

The modal maxima provide a quantitative method of describing the velocity in
the various zones. To the extent that a zone in any given realization corresponds
to a single packet of hairpins, the maximum may also be interpreted as the velocity
within the envelope defined by the hairpin vortices. We shall see later that the hairpin
packets have a mean length that exceeds the 1.2δ field of view of the present data.
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Reθ 〈UI〉/U∞ 〈UII〉/U∞ (〈UII −UI〉)/U∞ 〈UI〉/u∗ 〈UII〉/u∗ (〈UII −UI〉)/u∗
930 0.58 0.786 0.206 12.54 17.00 5.54

2370 0.60 0.80 0.201 14.37 19.19 4.82
6845 0.59 0.765 0.175 16.05 20.81 4.76
Average 0.59± 0.01 0.784± 0.02 0.194± 0.02 14.3± 1.7 19± 2.0 5.04± 0.4
over Reθ

Variation 1.7 2.5 10 11.9 10.5 8
over Reθ (%)

Table 3. Average modal velocities of zones.

Hence, on average, the data may include a portion of one packet and a different
portion of another. Because of this, zonal velocities cannot always be associated with
the induced velocities within a single packet, without some ambiguity. For example,
in figure 18(a) the modal (i.e. most probable) velocities for Zones labelled B, I, II and
III are 0.25U∞, 0.48U∞, 0.8U∞ and 0.94U∞, respectively. Since the velocity vectors
from the free stream and zone III lay within the same modal peak, they are difficult
to distinguish. The same difficulty appears in figure 18(b), but the modes are more
readily distinguished in figure 18(c).

Zone B corresponds to the buffer region where viscous retardation causes a contin-
uously decreasing velocity. Zones B and I combined correspond to the lowest-lying
hairpin packets. (However, in figures 16(a) and 18(c) it is likely that the region labelled
zone I actually contains vortices A and B that belong to a large packet – one of the
ambiguities mentioned above.) Most commonly, the histogram modes associated with
zones I and II are readily apparent for each Reynolds number. In terms of the hairpin
packets, this implies that it is common for one hairpin packet (corresponding to zone
I) to occur inside another (corresponding to zone II). Put the other way around, the
existence of multiple zones of uniform momentum can be explained if, within the
roughly 1.2δ × 1.2δ field of view considered here, portions of two or more hairpin
packets commonly coexist.

5.4. Properties of near-wall packets

Packets that lay within the first several hundred viscous wall units will be referred to
as near-wall packets. This region contains Zones B and I. The hairpin packets studied
by Zhou et al. (1996, 1997, 1999) are near-wall packets by this definition. The average
streamwise spacing of vortex heads in this region is 104, 139 and 144 viscous length-
scales for Reθ = 930, 2370 and 6845, respectively. These values are slightly smaller than
the 165–220 viscous scale range found by Zhou et al. (1997, 1999) for the asymmetric
hairpin vortex packet in channel flow. The mean spacing between successive hairpin
vortices in Smith’s (1984) laminar boundary layer was about 200 viscous wall units,
which also coincides with the spacing of shear layer events in Tardu’s (1995) boundary-
layer measurements at y+ = 15 and the spacing of pockets (Falco 1977, 1991).

For each Reynolds number there is a distribution of modal velocities found from
the ensemble of realizations. The averages of the modal velocities 〈UI〉 and 〈UII〉
are tabulated in table 3. The average measured in zone I is 0.6U∞ while the average
for zone II is 0.78U∞. The heads of the vortices that lie between zones I and II, i.e.
the heads of the vortices in the near-wall packets, should propagate at approximately
midway between these values, or about 0.69U∞. Since the friction velocity is nearly
proportional to the free-stream velocity over the range of Reynolds numbers studied
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here, it cannot definitively be established whether the modal velocities scale with the
friction velocity or the free-stream velocity, cf. table 3, but the evidence favours free-
stream scaling. In fact, the values of 〈UI〉/U∞ and 〈UII〉/U∞ are remarkably constant.

6. Large-scale structure of the hairpin packets
The principal conclusion drawn from the foregoing section is that multiple hairpin

packets commonly coexist, resulting in the appearance of multiple uniform momentum
zones. Because of the limited streamwise extent of the data used in the preceeding
section, it is not possible to determine the characteristic geometry of the packets, or to
evaluate even simple properties such as their average length and height. Furthermore,
the partial nature of the data leads to occasional ambiguities in the relationship
between zones and packets. To resolve these problems, a second PIV experiment has
been undertaken in which the streamwise field of view was increased from 1.2δ to
3δ by using lower-magnification photography (Tomkins 1997). Increasing the field
of view of the PIV necessarily increased the interrogation spot size, i.e. it decreased
spatial resolution. Consequently, the velocity data from this experiment, especially the
vorticity data, are not as accurate as the measurements presented above. However,
the data are sufficient to reveal the patterns of entire hairpin packets and to use the
vorticity field for qualitative flow visualization.

Representative velocity fields from the Reθ = 7705 experiment are presented in
figures 19, 20 and 23. The convection velocity subtracted from the flow vectors
corresponds to the velocity of a middle zone in each figure. The solid lines are
contours of constant u-velocity whose values were selected to coincide with the
edges of the zones. In the expanded view of an inset the convection velocity is
selected to coincide with the propagation velocity of the vortex heads, making them
easier to identify. Vorticity contours in the expanded insets, indicated by grey-level
contours, coincide well with the velocity vector patterns. Additional insets show highly
idealized depictions of the zones and their boundaries. To improve the visualization
of the vortex heads in figures 19 and 20, the kinematic swirling strength, instead of
vorticity, has been plotted in the lower figure in the form of grey-level contours. Zhou
et al. (1999) defined swirling strength as the imaginary part of the eigenvalue of the
velocity gradient. It coincides with the vorticity when the vorticity is associated with
roughly circular eddies, but it is negligible when most of the velocity gradient tensor
is associated with pure shear. Thus, swirling strength discriminates against shear
vorticity, making the swirling motion of a concentrated vortex core more obvious.
For example, the vorticity contours plotted in the inset to figure 19 indicate extended
regions of vorticity around x/δ = 1.5 to 1.9, whereas the swirling strength indicates
six roughly circular spots of high swirling strength in the same range.

The contours of constant velocity (solid lines) coincide closely with the locus of
heads of the hairpins, as indicated by either local maxima of the swirling strength
or the vorticity. The constant velocity contours provide a simple method of outlining
a hairpin vortex packet. In figure 19 they clearly reveal three packets of hairpins
containing uniform momentum zones labelled IIA, IB and IIB, whose heights in-
crease downstream in an approximately linear fashion. Similar ramp-shaped uniform
momentum zones are labelled IA, IIA, IB and IIB-IIIB in figure 20. This linear ramp
pattern is a very common form of a hairpin packet, observed in 80% of the images for
Reθ = 7705. Twenty-six per cent of the images contain two distinct inclines. The most
probable length of a packet at the high Reynolds number is 1.3δ, and the maximum
observed length was 2.3δ.
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Figures 19 and 20 each show that small, presumably young, packets lying close to
the wall (the near-wall packets) exist within larger, presumably older packets, which
exist within still larger, still older packets. It is this mixture of packets of various
ages and sizes that creates the multiple zone structure discussed in § 5. To illustrate
the relationship, frames have been drawn in figures 19 and 20 (dashed lines) having
widths of ∆x = 1.2δ, the same as in § 5. Viewing the restricted data within the frame
gives a picture very similar to that developed in § 5.

Consider the IB region in figure 19. Along its upper boundary, which has a mean
slope of 4◦, there are at least 12 vortex heads, each about 0.03–0.05δ in diameter,
evidenced by peak values of the swirling strength and ejection events. The IB region
of uniform momentum thus lies within the cage formed by a packet of at least 12
hairpins, and it is caused by their combined back induction. The packet looks very
much like the packets computed by Zhou et al. (1996, 1997, 1999), and sketched by
Smith et al. (1991). The heads, and presumably much of the rest of each hairpin, travel
downstream at about 0.61U∞. This packet exists within the environment, labelled zone
IIB, formed by the interior of a second packet that is more than twice as tall. That
packet, in turn exists within zone IIIB, which may be the interior of a yet larger
packet. (It is more difficult to identify packets in the wake region because the larger
packets create weaker back-induced flow and the wake region is confused by the
presence of the edge of the boundary layer.) The envelope of the packet that creates
zone IIB grows at a 9◦ angle.

Upstream of packet IIB, in the region 0 < x < 1.5δ, another packet IIA forms
a uniform momentum zone which includes at its bottom the near-wall packet that
creates IB. It grows at a 15◦ angle, and it is taller than the packet that creates IIB.
Packets IIA and IIB each move at about 0.79U∞ (implied by the fact that the vortex
heads fall on this velocity contour, and/or the interior induced flow zones have about
the same velocity). Consequently, they must maintain a relatively constant streamwise
position with respect to each other as they convect downstream. However, they must
‘run over’ packet IB, which is moving 0.18U∞ more slowly. The consequences of such
an encounter are expected to lead to a complex pattern of vortices owing to cut and
connect processes and pairing processes.

The packets in figure 20 resemble those in figure 19 in many ways. Packets IA
and IB propagate at nearly the same velocity, both lying along a velocity contour
of 0.70U∞, and both appear to be inside the back-induction zone IIA–B of a much
larger packet. They have similar envelope angles, 5◦ close to the wall and 11◦ farther
out, and the heights are comparable, 0.4δ for IA and 0.2δ for IB. Farther away
from the wall, a series of vortices angle upwards, extending across almost the full
view of the picture. These have been labelled packets IIA and IIB, and marked with
growth angles of 10–11◦, but they might also be interpreted as one long packet, as
they both lay along the velocity contour corresponding to 0.94U∞. Such a packet
might be the result of a streamwise concatenation of two or more smaller packets.
The above observations suggest the near-wall packets (IA, IB) and associated zones
will propagate downstream together, remaining in close proximity, while the packets
travelling above them (IIA, IIB) will be carried further downstream by the higher-
speed outer flow, with a relative or dispersive velocity near ∆U = 0.24U∞, the
difference between the convection velocities. Similarly, it may be conjectured that
higher-speed upstream structures currently out of the field of view may, at some
later time, catch up with packets IA and IB (now slightly older and perhaps larger),
potentially creating another complex encounter.

Upon further scrutiny, the layer structure in this realization may be yet more
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Figure 21. Conditionally averaged vortex streamwise convection velocities plotted as a function of
wall-normal location at Reθ = 7705, e, scaled with outer variables. �, mean streamwise velocity
profile.

complicated, because a sequence of hairpin heads, along the locus of the dashed
line in the inset schematic, may indicate one more packet. Note that many regions of
concentrated swirling strength and spanwise vorticity also occur in scattered locations
without any obvious pattern. Thus, while the hairpin vortex pattern explains much
of the flow, there is a non-negligible component of the flow that is more complex and
less coherent.

The above realizations are examples in which the larger, presumably older, packets
are convecting faster than the smaller, presumably younger, packets closer to the
wall. This scenario is commonly observed in analysis of the data, and indeed turns
out to be true on average. Figure 21 shows the convection velocities of all vortices in
the Reθ = 7705 data as a function of wall-normal distance in comparison with the
velocity profile. The convection velocities were calculated by conditionally averaging
streamwise velocities at locations at which the swirling strength was both a local
maximum and above a threshold. The threshold was set conservatively high (λci >
30λci, avg), i.e. the detection scheme may not have caught every vortex, but every
conditionally extracted velocity measurement is likely to correspond to a vortex
convection velocity. The velocities are then binned according to distance from the
wall. The results are remarkably close to the velocity profile, consistent with the
observations from figures 19 and 20. Scatter in the points further from the wall may
be due to a smaller number of samples meeting the criteria at this location.

The scenario that emerges from the foregoing results is summarized schematically
in figure 22, as viewed from the side in two dimensions. Here vortices are depicted
in yellow, and the low-momentum regions induced by those vortices are grey, with
darker grey corresponding to lower momentum due to stronger backwards induction
by the surrounding vortices. It should be viewed as an idealization that refrains from
attempting to portray the full complexity of real flows. The main features are:

(a) Packets consist of eddies that propagate together at packet convection speeds Uc.
(b) The angle of inclination of the hairpins in the packets is small close to the wall

(quasi-streamwise vortices) and increases to 45–90◦ towards the head of the hairpin.
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Figure 22. Idealized model of hairpin packets nesting within larger hairpin packets, and travelling
at different velocities. The nested hierarchy creates the appearance of multiple uniform-momentum
zones, and a progressively lower velocity as one approaches the wall.

(c) The packets have characteristic growth angles (defined by the angle of the
envelope of the packet) that are smaller than the inclination of the heads.

(d) The most recently formed packets are small and propagate more slowly than
the older, larger packets.

(e) Small packets exist within larger packets, and may be overtaken by the larger
packets, so that the pattern of the flow is constantly changing.

In addition to the simple linear ramp structures, various other patterns have been
observed. They include long, uninterrupted growth without zone II, an upstream
ramp merging into a taller downstream ramp, and no ramp at all. However, in most
cases when realizations display some type of pattern, that pattern contains a linear
ramp angle in some form. For example, figure 23 illustrates a realization in which
the near-wall low-momentum zone I contains both a positive and a negative ramp
angle. Zhou et al. (1999) report the formation of hairpins downstream of the primary
hairpin, leading to a negative angle consistent with that shown in figure 23. However,
the flow in figure 23 contains several additional complexities. The realization exhibits
a negative ramp angle above zone IIA followed by a positive ramp angle over zone
IIB. Furthermore, immediately above the vertex of zone I a series of slight swirling
patterns exist, which might be interpreted as being part of the hairpin packet in zone
I, or an independent series of weaker structures. We have no solid interpretation of
this pattern, and offer it mainly as a supplementary example to the scenario idealized
in figure 22. Note, however, that even in this case the linear growth pattern occurs.

Although the details of the flow patterns are not the same from realization to
realization, the regions of linear growth are a prominently recurring feature. Statistics
on the growth angle have been gathered by fitting a linear curve to the edge of a low
momentum zone wherever one occurred, independent of the distance from the wall.
The resulting histogram, figure 24, shows that the most probable angle is 10.5◦, with
the angles ranging from 3◦ to 35◦. The 12◦ mean angle agrees well with the simulations
of Zhou et al. (1999). Some of the range of variation is due to not segregating the
data according to distance from the wall, since the angle does tend to increase with y.
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Figure 24. Histogram of the growth angle of linearly growing packets. Reθ = 7705.

7. Summary and conclusions
7.1. Summary

The structure of a zero-pressure-gradient boundary layer at three Reynolds numbers
has been studied using PIV. Two separate experiments were performed: one with
1.2δ streamwise field of view and high resolution and one with 3δ field of view and
correspondingly lower resolution. Single-point statistics measured by PIV in these
flows agree well with available data from other investigations, indicating that the
boundary layer behaved normally. The PIV measurements obtained with and without
the boundary-layer trip showed that the trip did not change the overall structure of
the boundary layer.

PIV data in the (x, y)-plane almost always contain several, usually many, hairpin
vortex signatures. The signature is a two-dimensional velocity vector pattern charac-
terized by (i) a vortex head with a Q2 event located beneath it along a roughly 45◦
locus, (ii) velocity vectors showing a maximum speed below the vortex head, and (iii)
a shear layer caused by stagnation-point flow resulting from the Q2/Q4 interaction,
cf. figure 10. The maximum in the speed of the Q2 event implies that the signature
is caused by the combined induction of a three-dimensional vortex head and neck
that surround the location of the maximum. A spanwise vortex could not produce
a maximum. A simple inclined vortex in the (x, y)-plane could produce a maximum
only if it were intensified by strong local stretching. A head and neck creating the
concentrated induction is considered to be more probable.

In the outer layer, signatures of hairpin vortices are observed in all of the PIV
realizations. The length of a typical signature close to the wall is about 200 viscous
units, and the height ranges from the top of the buffer layer upwards. Close to the
wall (y+ < 50–100) (x, y)-plane patterns of ejection are consistent with the vortex
legs bending and becoming quasi-streamwise vortices. The angle θ at which the neck
and head are inclined to the wall varies from 15◦ to 75◦ (with 45◦ being typical), as
determined by the angle of the signature shear layer. It is consistent with the range
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of angles observed from the quasi-streamwise vortices to the hairpin head in Zhou et
al. (1999). The angle of the hairpin head is a strong function of its location; the head
takes a near vertical orientation in the outer regions of the boundary layer, while near
the wall it takes a more conventional 25–45◦ angle. The length and height increase
with y, presumably as the hairpin grows in time.

The three-dimensional pattern of a real hairpin is neither symmetric nor determinis-
tically reproducible, but despite random variations, its imprint on the two-dimensional
velocity field is easily recognized. The quasi-streamwise vortex pattern, the hairpin
shape, the horseshoe or omega shape, and the one-sided cane-type vortices are all part
of the same entity at various stages of their evolution, with different aspect ratios and
different degrees of asymmetry. We refer to this entity in any of its forms as the ‘single
hairpin paradigm’. This paradigm has a long history, but despite several notable pieces
of pioneering work supporting the concept, it has not enjoyed unequivocal accep-
tance. Theodorsen’s (1952) horseshoe vortex founded the hairpin-vortex paradigm,
although it failed to countenance quasi-streamwise legs. The visualizations of Head
& Bandyopadhyay (1981) made a strong inferential case for hairpins, but the un-
certainties of smoke visualization, the use of a large sawtooth boundary-layer trip
and the rarity of clear observations of individual hairpins left the question open to
debate. Praturi & Brodkey (1978) saw all of the elements of hairpin vortices, but an
entire composite hairpin was not observed. Likewise, Robinson’s (1991, 1993) direct
numerical simulation study of boundary-layer structure identified all of the parts
of a hairpin structure, but stopped short of unqualified endorsement of the hairpin
paradigm, presumably because clear examples of a complete hairpin were rare using
the visualization tools available (three-dimensional contours of vorticity and pres-
sure). Recently, the evidence for hairpin vortices similar to the paradigm sketched in
figure 10 has begun to accumulate for low-Reynolds-number flow. Chacin, Cantwell
& Kline (1996) achieved clearer visualizations using critical-point analysis of DNS
data for fully turbulent channel flow. The numerical simulations of Zhou et al. (1999)
and Singer & Joslin (1994), and the experiments of Haidari & Smith (1994) and
Smith et al. (1991) all lend credence to hairpin formation in low-Reynolds-number
flows, although none of these flows were turbulent.

The evidence presented here is believed to be the first experimental study that
offers strong quantitative support for the existence of hairpin vortices in relatively
high-Reynolds-number wall turbulence. It cannot be disputed that hairpin vortex
signatures populate the boundary layer abundantly. They are found everywhere if
looked for either using (x, y)-plane flow patterns in frames of reference that travel
with the vortex heads, or using swirling strength, which discriminates against the shear
vorticity in favour of the swirling component of vorticity. If the relatively credible
hypothesis that the hairpin vortex signature, as defined, is a manifestation of a hairpin
vortex is accepted, then it must be further concluded that hairpin vortices populate
real boundary layers abundantly at both high and low Reynolds numbers.

Beyond the existence of hairpin vortices, the data also show individual hairpins
commonly aligned behind each other in the x-direction to form a group. The groups,
or ‘packets’ propagate with small velocity dispersion (approximately 7%), such that
the relative spacing and arrangement of the hairpins within a packet remain coherent
for long times. More than 10 hairpins have been observed per packet, and packets
may extend out to 0.8δ and be as long as 2δ. These packets are the dominant flow
structure from the outer edge of the buffer layer to the outer wake region at each
Reynolds number.

In the most commonly observed configuration of a packet, the envelope of the
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packet, as observed in the (x, y)-plane, is a linearly growing ramp. This remarkably
linear structure is observed more frequently in high-Reynolds-number flow than in
low-Reynolds-number flow. The linear hairpin packet paradigm is a fair representation
over a range of Reynolds numbers, but the structures are not so linear at the lower
Reynolds number. Observations in the lower part of the outer layer, i.e. y+ < 200 are
generally consistent with Smith’s (1984) observation of multiple hairpin formation in
wall turbulence at low Reynolds number, and they mutually support the basic theory
of near-wall hairpin formation by the viscous/inviscid mechanism (Smith et al. 1991),
and the low-Reynolds-number numerical simulation of Zhou et al. (1999). These are
the packets in their early stage of growth, associated with uniform momentum zone
I. Like the near-wall packets, linear ramp-shaped packets have also been observed to
form the outer edge of the boundary layer (Bandyopadhyay 1980).

The second principle contribution of the present work is to show that hairpin
packets occur throughout the boundary layer, often one within another, and at
various stages of growth. These observations of packet structures internal to the
boundary layer complete a picture in which packets are created at the wall and grow
to span a significant fraction (sometimes all) of the boundary layer. The internal
packets have not been sensed by previous investigations using smoke visualization
or H2-bubble visualization, presumably because of small-scale turbulent dispersion
within the boundary layer. The present work also shows that zones of relatively
uniform streamwise momentum exist within the packets. The nesting of one packet
within another leads to the creation of multiple zones of different uniform momentum.

Lastly, inspection of the contour plots of spanwise vorticity and the swirling
strength both reveal vortex cores throughout the boundary layer whose diameters are
approximately constant and close to the diameters of the cores located near the wall.
Larger cores also exist, but they are harder to see than the smaller, more intense
cores. The diameter of this ‘smallest’ vortex may not scale with either inner or outer
units, but, typically, it is 30 viscous wall units.

7.2. Structural model

The hairpin packet paradigm has the potential to unify many seemingly unconnected,
or even disparate facts about the structure of turbulent boundary layers. The rest
of this paper will be directed to understanding the current body of wall turbulence
lore in the context of hairpin packets. To this end, we will first describe an idealized
conceptual model based on the hairpin packet paradigm, and then show how it
explains most facts known about coherent structures in the outer region of wall
turbulence. The model is derived mainly from the combination of results from
Zhou et al. (1999) regarding the initial formation and growth of the hairpin packet,
and the present experimental PIV results regarding hairpins and hairpin packets in
higher-Reynolds-number flow. It rests squarely on the pioneering contributions of
Head & Bandyopadhyay (1981) and Smith and co-workers, although much of the
hairpin packet concept was developed along independent lines until Tomkins’ (1997)
experiment incontrovertibly showed packets in the linear ramp-form depicted by Head
& Bandyopadhyay (1981). Also, we only recently became aware of a model proposed
by MacAulay & Gartshore (1991), which also includes the hairpin packet concept.
None of these studies, including ours, dealt with interactions between hairpins or
hairpin packets, so all effects due to interactions are absent.

It is assumed that the mechanisms for hairpin vortex autogeneration studied at
low Reynolds number in the channel-flow simulation of Zhou et al. (1996, 1999)
also pertain to the low-Reynolds-number region of high-Reynolds-number boundary
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layers. That is, the DNS calculations, which extend up to y+ ∼ 150 at the centreline of
the channel represent the hairpin evolution that occurs in the first few hundred viscous
lengthscales of a much deeper high-Reynolds-number boundary layer. Subsequent
evolution and generation within this deeper layer lead to the observed increases in
number of vortices per packet and streamwise length in terms of viscous wall units.
Differences between flows in channels, boundary layers and pipes are assumed to reside
mainly in the large scales, of the order of the scale imposed by the boundary condition.
Although the large scales may have some effect on the growth of the small scales,
their effects will be ignored, until future work can provide better evidence about them.

In this model, packets originate at the wall from a disturbance whose character is
not specified except that it creates a pool of low momentum at the wall, i.e. a Q2 event
from another hairpin, a bump, a puff of low momentum through the wall, a random
pressure fluctuation, or a culmination of flow induced by surrounding events such
as wall-tangent flows that converge to a stagnation point and thence erupt upwards.
First, the primary hairpin is formed. It is stretched and intensified by the difference
between the streamwise velocity at its legs and its head, and grows continuously in
time, changing from a hairpin-shape to an omega-shape. If its strength is sufficient,
it autogenerates a new upstream hairpin by inducing a strong, three-dimensional Q2
that interacts with high-speed fluid behind the primary hairpin. As time progresses,
the secondary hairpin increases in size and, at a certain time, it, too, begins to create
a tertiary hairpin. The angle of the envelope connecting the heads of the hairpins, γ,
is determined by (i) the rate of continuous growth vertically (and spanwise), (ii) the
streamwise convection velocity of the hairpin, and (iii) the relatively uniform time
between the formation of successive hairpins. The primary hairpin is also capable of
generating a new hairpin downstream of the primary, and this hairpin may generate
others (Zhou et al. 1999). Unless the initial disturbance is smooth and perfectly
symmetric about the (x, y)-plane, the resulting packet of hairpins is not symmetric,
and, at later times, the pattern of vortices in the packet becomes quite complex (Liu
& Adrian 1998), even in a clean background flow at low Reynolds number. Even
so, the characteristic growth angle γ, can usually be discerned, implying that the
growth rate is not sensitive to the geometric details of the vortices. In a real turbulent
flow, a new packet forms in an environment of larger-scale random flow that will
increase randomness in the packet. Thus, linear growth is not always observed in the
experimental data, nor is the growth rate constant. However, for the purposes of an
idealized model, it seems reasonable to assume that the packets grow linearly, albeit
with different rates.

The idealized packet is a ramp or diamond with a growth angle γ (see figure 25).
The young hairpins are about 100–200 viscous wall units apart, and their legs are
about 50 viscous units apart. In the buffer layer, low-speed streaks form between the
legs. The spacing of 100 viscous wall units between low-speed streaks indicates that
the young hairpins are densely distributed on the wall. The computations of Zhou
et al. (1999) show that the legs spread in the spanwise direction as the hairpins age,
which we assume is also true for large Reynolds numbers. This is one of the few major
departures from the concepts of Head & Bandyopadhyay (1981), who suggested that
the mean spanwise width of the hairpins was 100 viscous units from the wall to the
top of the boundary layer. In our view, such narrow structures would be shredded
by the motion of larger eddies. One cannot, for example imagine 1 mm wide hairpins
stretching from the earth’s surface to the top of the planetary boundary layer. The
basis for Head & Bandyopadhyay’s (1981) thin hairpin model was the observation of
occasional hairpin loops of smoke at the upper edge of the boundary layer having
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Figure 25. Conceptual scenario of nested packets of hairpins or cane-type vortices growing up
from the wall. These packets align in the streamwise direction and coherently add together to
create large zones of nearly uniform streamwise momentum. Large-scale motions in the wake
region ultimately limit their growth. Smaller packets move more slowly because they induce faster
upstream propagation.

widths of the order of 100 viscous units. However, narrow hairpins in this region
could also be explained by assuming that they were formed locally, i.e. at the top of
the boundary layer and not at the wall.

The convection velocity of a vortex in a packet is determined by the velocity of
the environment in which the vortex exists and the velocity with which the vortex
propagates though that environment owing to mutual induction of its elements
and the elements of the surrounding vortices. To first order, we can approximate the
streamwise convection velocity of the head and neck of a hairpin by the velocity of the
surrounding fluid minus the upstream component due to self-induction, proportional
to the circulation of the vortex core divided by the width (or diameter) of the hairpin.
According to this model, the larger hairpins have a smaller back-induced velocity, and
hence propagate downstream more rapidly. In a young packet with only a few hairpins
having nearly the same size, this means small velocity dispersion, and relatively slow
downstream convection speed. As a packet ages, its larger hairpins begin to move
downstream at a significantly faster rate than the smaller, younger hairpins, in part
because the back-induced velocity decreases with increasing size and in part because
the background flow may be faster at greater distances from the wall. The packet
becomes stretched as the larger, older hairpins move away from the younger, smaller
hairpins, and on average, larger packets move more rapidly than smaller packets.

The hairpin packets are also related to bulges in the outer surface of the boundary
layer. At low Reynolds numbers the packets contain fewer hairpins than in higher-
Reynolds-number flow, so a typical packet may contain 2–3 vortices. Packets that
grow to the outer region define the instantaneous boundary-layer edge, which is highly
corrugated at lower Reynolds number, and are the previously observed turbulent
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bulges. The length of the bulges is known to be about 2δ (Kovasznay, Kibens &
Blackwelder 1970), while the distance between hairpins scales roughly with viscous
wall variables at about 100–200 viscous wall units. Hence, the number per packet
increases with increasing Reynolds number. The scaling of distance between hairpins
is not simple, in part because the distance increases as the hairpins grow.

When considering hairpins attached to the wall, there appears to be an upper
limit on their height ∼ 1.2yL, for all three Reynolds numbers. This implies that
outer variables govern the upper limit on hairpin head heights. The overall dynamics
of hairpins does not appear to be governed by just inner or outer variables. The
mechanism responsible for the streamwise spacing may be governed by inner variables
for the larger Reynolds numbers. If these heads are related to bursts in the buffer
regions, then the streamwise spacing may be related to burst frequency, which has
been investigated by numerous researchers. Many of these researchers have reported
that burst frequency scales with inner variables, including Blackwelder & Haritonidis
(1983), Kim & Spalart (1987), Luchik & Tiederman (1987) and Wark & Nagib
(1988). The concept of burst frequency scaling with inner variables is consistent with
the concept of average streamwise spacing scaling with inner variables.

Figure 25 portrays three hairpin packets, each formed from 3–6 asymmetric hairpins
whose vortex cores are shown in yellow. The vortices are depicted here with a moderate
degree of asymmetry, though for any given vortex this may vary from nearly symmetric
to highly asymmetric (one-sided or cane-like). The cores of the hairpins grow with
increasing distance from the wall, but less strongly than outer scaling would predict,
and the larger packets have larger hairpins, and, hence, faster convection velocity, Uc,
in the streamwise direction. The younger packets are comprised of attached eddies.
On the basis of the available data, we are unable to say whether the legs of the oldest,
largest packets are attached to the wall, in the sense that they extend down to the wall,
or whether they are analogous to the type B eddies of Marusic & Perry (1995), which
are physically detached but ‘attached’ in the sense that their size scales with distance
from the wall. Note also the depiction of two smaller detached hairpins in the outer
flow. The appearance in the data of smaller HVS in the outer region suggests hairpins
may be formed locally away from the wall, consistent with the observations of Rogers
& Moin (1987) in homogeneous shear flow. Within each packet, the flows induced by
the vorticity of the cores of the hairpins combine to form an interior region having
relatively uniform streamwise momentum (indicated in blue). The back-induced flow
is proportional to the core circulation divided by the diameter of the hairpin, like
the induced propogation. Hence, smaller packets have stronger back-induced flow
(darker blue), and the smaller end of a packet has stronger back-induction than the
larger end. The induced momentum is not uniform, because back induction varies as
hairpins grow, and since the growth angle γ is small, the momentum is slowly varying.
Thus, the streamwise velocity in a zone of uniform momentum is constant only in an
approximate sense.

The streamwise alignment of the hairpins in a packet is not perfect, and the evidence
of waviness in the low-speed streaks in the buffer layer suggests that the hairpins
may be displaced laterally by as much as the spanwise width of the hairpin over the
length of several hairpins. Even so, the hairpins are relatively well aligned for long
distances, as evidenced by the fact that packets have been observed containing more
than 10 hairpins. We refer to this as ‘coherence’ between the hairpins in a packet,
meaning that there is an organized pattern of hairpins in space. Because of this
coherence, the back-induced flows from the hairpins combine to produce stronger
backflow than could be achieved by incoherently aligned individuals. The flux of
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fluid in the streamwise direction is analogous to the magnetic flux induced by current
flowing through windings of an electromagnetic solenoid. For this reason, we shall
refer to the intensification of the back-induced flux by the hairpin coherence as the
‘solenoid’ effect. Clearly, more windings or closer spacing imply more flux.

The appearance of multiple zones of uniform momentum is a consequence of older,
larger packets over-running smaller, younger packets. Thus, a region labelled zone I in
the earlier discussion corresponded to the interior of a young packet, while the region
labelled zone II corresponded to the interior of an older packet. The small end of a
large, old packet could be labelled zone I, while its large end could be labelled zone
II, or even zone III, if two smaller packets lay beneath it. Thus, the instantaneous
configuration of packets determines the pattern of the zones of uniform momentum.
Since the packets move with different velocities, the pattern is ever evolving. This
could explain why wall turbulence can look very complicated, even if it is made of
relatively simple elements.

When a new packet grows inside the uniform momentum zone of an older packet, it
experiences a flow environment different from the free stream. The velocity differences
are less, and, hence, it is strained less. In this way, small packets are shielded from
the full straining potential of the boundary layer. As the packets grow, the velocity
differences between adjacent zones should decrease.

The model implies that turbulence structures arise at the wall, and grow by contin-
uous straining of the hairpins, coupled with mutual induction interactions within the
packets. This is one fundamental means by which the lengthscale increases linearly
with distance from the wall. It also implies that large structure in the turbulent bound-
ary layer is created by coherent concatenation of hairpins, as well as growth of the
hairpins by straining. These large structures may grow well beyond the logarithmic
region. While the creation of large eddies from small eddies appears at first blush to
run counter to the energy cascade process, it must be remembered that the inhomo-
geneity of wall turbulence permits this to happen. Furthermore, it is conceivable that
the large structures can become unstable and break down into smaller eddies, even
though they were formed from small eddies. The model says little about interactions
of packets because the evidence about such interactions is not openly available. Yet,
unpublished simulations in our group indicate that interactions do occur. Lateral
interactions produce a vortex annihilation in which the right leg of the hairpin in
the left packet annihilates the left leg of the vortex in the right packet, cf. Wark &
Nagib (1989). The remainder is a double-wide vortex and a low-lying counter-rotating
vortex, if the remaining quasi-streamwise vortex segments reconnected viscously. The
double-width vortex produces half the back-induced motion, which might account
for the region marked IIb in figure 20. This is a second mechanism for growth of the
turbulence lengthscale.

The full range of hairpin and hairpin packet interactions can only be speculated.
They range from soliton behaviour in which packets pass through other packets
without lasting modification, to pairing by vortex interaction, to total disruption of
the ordered structure by many vortex cuts and reconnects. The latter seems the least
likely, because it would result in relatively few old packets, contrary to observation.
However, the cut and reconnect mechanism should occur to some extent, and it may
be effective in the wake region of the boundary layer where packets are infrequent.

7.3. Discussion and conclusions

Although it is conceded that a full picture of the structure of the turbulent boundary
layer requires an understanding of the interaction of hairpins and packets, and
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perhaps the discovery of structures that have not yet been observed, the simple model
presented above is capable of explaining much that is known about the structure of
wall turbulence. Below we list all the important features that can be explained on the
basis that the boundary layer is made up of hairpin packets.

The single hairpin vortex paradigm by itself explains many aspects of structure
in the turbulent boundary layer. Robinson’s (1991, 1993) observations that quasi-
streamwise vortex legs dominate the buffer layer, inclined necks and heads dominate
the logarithmic layer, and that heads are predominant in the outer layer are consistent
with a distribution of hairpins having different sizes. Ejections (Q2 events) in the outer
layer can be associated with the flow induced by the head and neck. Low-speed streaks
in the buffer layer can be attributed to low-momentum fluid lifted up by the induction
of the quasi-streamwise vortices. The results Sirovich (1997) obtained from proper
orthogonal decomposition (POD) of low-Reynolds-number channel flow show that
the most important POD modes are the streamwise independent modes with support
close to the wall and a pair of inclined propagating modes with support in the core.
The former modes can be attributed to the quasi-streamwise legs of the hairpins and
the associated long, low-speed streaks. The propagating modes that trigger the onset
of burst-like activity can probably be attributed to projections of the hairpin heads
onto propagating POD modes.

However, the single hairpin paradigm does not account for certain essential features.
Numerical simulations indicate that the length of a single hairpin can only account for
streaks and ejections that are several hundred viscous wall units long, considerably
shorter than observations. Also, a single hairpin cannot explain the formation of
long streaks of low-momentum fluid in the outer layer, as observed by Chen &
Blackwelder (1978), and more explicitly by Meinhart & Adrian (1995), nor can it
explain the occurrence of ejection events in groups.

The hairpin vortex packet paradigm provides an explanation for these phenomena
and others. In the buffer layer, cooperative second-quadrant pumping of the near-
wall fluid by the legs of many streamwise-aligned hairpin vortices in a packet can
create very long (more than 1000 wall units) low-speed streaks. The tendency of
packets to form as a spanwise-staggered array of one-sided hairpins can explain the
often-observed slow spanwise oscillation of the low-speed streaks.

Low-speed streaks are observed in the outer layer as well as in the buffer layer.
Also, the time-delayed u-autocorrelation function is known to possess a long tail,
indicating structure that is very long (of the order of δ or more) in the streamwise
direction (Grant 1958; Townsend 1958). These structures are Townsend’s (1976)
large-scale inactive motions. We interpret them to be consequences of the coherent
induction of the hairpins in a packet. The low-speed streaks associated with individual
vortices are only a few hundred viscous wall units long (Zhou et al. 1999), so the
alignment of many such vortices is necessary to explain the large-scale structures. This
coherence is more effective for the streamwise component than for the wall-normal
and spanwise components because of the streamwise alignment of the vortices. Hence,
the correlation length of the streamwise velocity is much longer than the correlation
length of the other two components. The individual vortex members contribute to
the Reynolds stress and wall-normal turbulence locally, owing to the limited spatial
coherence of the vertical component, and may be interpreted as the smaller-scale
active or universal motions. The nesting of smaller packets within larger ones, which
are within even larger ones, and so on, creates the appearance of multiple zones of
uniform streamwise momentum, which is an observed characteristic of the logarithmic
layer (Meinhart & Adrian 1995).
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The alignment of hairpin vortices in packets also explains several puzzling aspects
of turbulent bursts. The classical bursting sequence, as observed by H2 bubble visu-
alization, is a wavering of the bubbles, followed by lift-up of the low-speed streak
and a violent burst (Kline et al. 1967). However, in more modern work, Bogard &
Tiederman (1986), Luchik & Tiederman (1987), and Tardu (1995) all conclude that
the near-wall burst process consists of a sequence of Q2 events. In addition, Tardu
(1995) shows that later events in a sequence become stronger, ultimately terminating
in one exceptionally strong ejection. These fundamental aspects of turbulent bursts
can also be explained by the passage of a streamwise arrangement of the hairpin
vortices in a packet. The adjacency of hairpins within a packet clearly implies a
sequence of Q2 events in space. It also results in strong internal shear layers caused
by the induced downflow (Q4) from an upstream vortex head meeting the low-speed
upflow (Q2) induced by an adjacent downstream vortex, cf. figure 11. This Q2/Q4
stagnation-point flow provides the source of the VITA signature, often used to identify
burst processes. As a packet sweeps over the H2 bubble wire, the passage of each
hairpin would perturb the flow up and down (cf. figure 11 for an example of the
oscillating streamlines in a packet), and the oscillation builds as the smaller end of
the packet approaches, owing to the induction increasing as the scale of a hairpin
decreases. At the end of the packet, the back-induced flow would be unopposed by
the downwash of an upstream hairpin, and the bubbles would be ejected from the
packet by the strongest hairpin, a combination that could produce a very strong
upward motion.

Given the modern definition of a burst as a cluster of ejection events, it is highly
likely that the turbulent burst process is a manifestation of the passage of a hairpin
packet. The burst sequence is not a temporal oscillation, but merely a sequence of
forced responses to the passage of the packet.

The preference for cane-shaped, one-sided hairpins observed by Guezennec et al.
(1987) and Robinson (1991) has been explained by the fact that asymmetric hairpins
autogenerate more rapidly than symmetric hairpins (Zhou et al. 1999). The packet
created by a strongly asymmetric hairpin consists of an alternating sequence of right-
and left-handed canes. If attention is confined to only the near-wall region (y+ < 60),
the behaviour of the packet is very similar to that proposed by Schoppa & Hussain
(1997) and Jeong et al. (1997).

The mean growth angle of an inclined hairpin ramp γ = 12◦ is lower, on average,
than the 20◦ angle found by Head & Bandyopadhyay (1981), but the latter is within
the range of angles found in figure 24. The general trend for γ to increase with
age/distance from the wall may explain some of the difference, since most of Head
& Bandyopadhyay’s observations were for the outer edge of the boundary layer, and
our slope data is taken closer to the wall.

Brown & Thomas (1977) infer an 18◦ angle from the location of maximum correla-
tion between the wall shear stress and u. This is also higher than present observations,
but again, the correlation may tend to emphasize the outer flow. They interpreted their
results in terms of the backs of turbulent bulges, which are essentially phenomena of
the outermost edge of the boundary layer. Many other studies based on correlation
or conditional averaging (cf. Chen & Blackwelder 1978; Alving, Smits & Watmuff
1990; MacAulay & Gartshore 1991, for example) have found angles ranging from 15◦
to 90◦. It seems inevitable that without a priori knowledge of the general structure,
statistical averaging methods will confound the various structures in the boundary
layer – backs of bulges, hairpin inclinations and growth angles of hairpin packets.
Many investigations interpret their results in terms of backs of bulges, which were
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observable from visualization, but not in terms of internal hairpin packets, which
must also have contributed to the average behaviour. Thus, the structural evidence
is difficult to interpret. However, outer-scale structures such as backs and bulges and
hairpin packets are related, especially in lower-Reynolds-number boundary layers
where the hairpins extend to the top of the outer layer, and the bulges appear to be
the sum of two or three hairpins. As the Reynolds number increases, Alving et al.
(1990) observed that the bulges become less prominent, and the outer edge becomes
flatter. This behaviour is likely to be associated with the number of hairpins in each
packet increasing with Reθ , since the amplitude of statistical fluctuations associated
with a large collection of eddies will decrease as the number increases. MacAulay &
Gartshore (1991) offer a similar interpretation.

The hairpin packet scenario clearly supports and gives specific interpretation to
Townsend’s (1976) attached eddy hypothesis which states that eddies attached to the
wall grow in proportion to their distance from the wall in a self-similar fashion.
Growing hairpins are consistent with this scenario, and the linear growth rate of the
hairpins in a packet supports self-similarity, although it is understood that the young
hairpins evolve through a non-similar series of shapes before becoming omega-shaped
in their later stages. It is interesting that on a coarser scale, i.e. one that low-pass
filters the cores of the hairpin vortices, the remaining flow pattern of a packet
characteristically satisfies Townsend’s attached eddy hypothesis.

Many aspects of the model described here can be found in the work of Perry and
co-workers (Perry & Chong 1982; Perry, Henbest & Chong 1986; Marusic & Perry
1995; Perry & Marusic 1995) in which the boundary layer is conceived as a collection
of randomly located hairpins whose properties are qualitatively compatible with those
that have been found experimentally in this paper. The principal difference between
the present observations and the lambda-vortex models of Perry and co-workers is the
organization of hairpins into packets, and it is reasonable to ask how that difference
might affect the quantitative behaviour of the flow. Following Zhou et al. (1997), let
the velocity field of the αth hairpin at some instant be uα(x, t), and let u(x, t) be the
total field

u(x, t) =
∑
α

uα(x, t). (2)

For the purpose of illustrating the effect of grouping the hairpins, nonlinear interac-
tions can be ignored. The mean Reynolds shear stress is

uv =
∑
α

uα
∑
β

vβ =
∑
α

uαvα +
∑
α

∑
β 6=α

uαvβ, (3)

where the first term is the sum of Reynolds stresses from individual hairpins in the
packet, and the second term is the contribution to the total Reynolds shear stress from
the interaction of the hairpins. Essentially, it is the transport of u-momentum in the
αth hairpin field by vertical motion of the field of the βth hairpin. The terms in this
summation average to zero unless there is correlation between the spatial locations
of the hairpins within a packet. Physically, this correlation enhances the Reynolds
stress by the cooperative transfer of momentum between the hairpins, leading to a
large-scale low-speed zone.

We call the last sum in (3) the coherent stress because it exists only when the hairpins
are arranged coherently, and is thus absent in the random lambda-vortex models. The
Reynolds stresses calculated in Perry & Marusic (1995) are based on such a model,
and indeed differences exist between the model prediction and experiment. However,
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addition to the model of a second group of structures, the physically detached ‘type-
B’ eddies, leads to quite reasonable agreement. Prediction in either model might be
improved by the addition of a coherent stress contribution. The magnitude of the
coherent stress depends upon the spacing of the hairpins. Clearly, as the spacing
grows beyond the support of the individual hairpins, the interaction diminishes and
the coherent stress vanishes. Thus, organization of the hairpins within a packet is
involved in creation of turbulent stresses, and modification of this organization may
be an important method of manipulating wall turbulence.

The wide field of view data used in this research may currently be found following
links on the web page of the Laboratory for Turbulence and Complex Flow at the
Department of Theoretical and Applied Mechanics at the University of Illinois at
Urbana-Champaign, http://ltcf.tam.uiuc.edu. Selected images of instantaneous vector
fields are available for viewing and/or download, and all raw data is available for
download.

This work was supported by grants from the Office of Naval Research and the
National Science Foundation.
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